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Preface 

The International Union of Theoretical and Applied Mechanics (IUTAM) initiated and 
sponsored an International Symposium on Nonlinear Dynamics in Engineering 
Systems held in 1989 in Stuttgart, FRG. The Symposium was intended to bring 
together scientists working in different fields of dynamics to exchange ideas and to 
discuss new trends with special emphasis on nonlinear dynamics in engineering 
systems. 

A Scientific Committee was appointed by the Bureau of IUTAM with the following 
members: 

S. Arimoto (Japan), 
F.L. Chernousko (USSR), 
P.J. Holmes (USA), 
C.S. Hsu (USA), 
G. looss (France), 
F.C. Moon (USA), 
W. Schiehlen (FRG), Chairman, 
G. Schmidt (GDR), 
W. Szemplinska-Stupnicka (Poland), 
J.M.T. Thompson (UK), 
H. Troger (Austria). 

This committee selected the participants to be invited and the papers to be presented 
at the Symposium. As a result of this procedure 78 active scientific participants from 
22 countries followed the invitation, and 44 papers were presented in lecture and poster 
sessions. They are collected in this volume. At the Symposium an exhibition with 
experiments took place and the movie "An Introduction to the Analysis of Chaotic 
Dynamics" by E.J. Kreuzer et.al. was presented. 

The scientific lectures were devoted to the following topics: 

o Dynamic Structural Engineering Problems, 
o Analysis of Nonlinear Dynamic Systems, 
o Bifurcation Problems, 
o Chaotic Dynamics and Control Problems, 
o Miscellaneous Problems, 
o Experimental and Theoretical Investigations, 
o Chaotic Oscillations of Engineering Systems, 
o Characterization of Nonlinear Dynamic Systems, 
o Nonlinear Stochastic Systems. 

Since many of the presentations are related to more than one of these topics, the 
papers in this volume are arranged in alphabetical order. The papers indicate the wide 
scope of engineering applications of nonlinear dynamics reaching from mathematics 
and physics to vibration of machines and structural dynamics including stochastic 
systems. The presentations and discussions during the Symposium will certainly 
stimulate further theoretical and applied investigations in the challenging field of 
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nonlinear dynamics. The publication of the proceedings may promote this 
development. 

Generous financial and material support contributed to the success of the Symposium. 
The help of the following sponsors is gratefully acknowledged: 

International Union of Theoretical and Applied Mechanics (IUTAM), 
University of Stuttgart, 
Robert Bosch GmbH, Stuttgart, 
Daimler-Benz AG, Stuttgart, 
MAN. Technologie AG, MOnchen, 
City of Stuttgart. 

The success of the Symposium would not have been possible without the excellent 
work of the Local Organizing Committee. Members of the Committee were: 

R. Eppler, K. Kirchgassner, E. Kreuzer, W. Schiehlen (Chairman), D. Bestle, 
A. Eiber, M. Kleczka, R. Weber (Secretary). 

In the editorial work for this volume the help of my colleague D. Bestle was especially 
valuable. In addition I would like to express my sincere thanks to all the members of 
the Institute B of Mechanics, they all contributed to the success of the Symposium. 
Furthermore, thanks are due to the Springer-Verlag for the efficient cooperation. 

Stuttgart, October 1989 

Werner Schiehlen 
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Opening Address 

W. Schiehlen, Chairman 

Mr. Vice-Rector, 
Mr. Ministerial Counsellor, 
Highly Honoured Guests, 
Dear Colleagues from so many countries. 

On behalf of the International Union of Theoretical and Applied Mechanics I call this 
meeting to order, and in the name of the Local Organizing Committee I welcome you 
to the Symposium on Nonlinear Dynamics in Engineering Systems. 

The logo of our Symposium is called the "Bird of Paradise". This colourful "Bird" is 
a typical example for the strange attractor of a nonlinear discrete system featuring 
chaotic behavior. You have to imagine that the computation of the "Bird" requires 5 
millions of iterations. And the colours ranging from red over yellow and green to blue 
indicate a decreasing probability for the state of the system. Such highly sophisticated 
computer simulations are one face of Nonlinear Dynamics. The other faces are applied 
mathematics, theoretical mechanics and experimental physics. Many of the scientific 
results could only be discovered by the fertilizing cooperation between mathematicians 
and physicists. However, the mathematical theory is not within the scope of this 
Symposium, it is devoted to numerical methods for super computers and engineering 
applications. 

There is a broad range of Nonlinear Dynamics problems in technical sciences. For 
example, the knots of a rope springing up during unfolding is nothing else than spatial 
chaos in an elastic continuum. The bifurcation and loss of stability of a nonlinear 
dynamical system may result, as another example, in the derailment of a railway 
vehicle. Grating beams or squeaking doors, respectively, cannot be analyzed without 
methods from Nonlinear Dynamics. 

It is typical for such nonlinear dynamical problems that a failure of predictability of their 
motion may occur. In particular, Nonlinear Dynamics has very recently demonstrated 
that mechanical systems do not necessarily exhibit the predictability property well 
accepted in classical mechanics over three hundred years. The deterministic irregular 
motion, often called chaotic, and the stochastic motion of a dynamical system are 
closely related. Therefore, in the scope of our Symposium nonlinear random 
phenomena are also included. 

What are the detailed topics of our Symposium? About 50 papers will be presented 
within two Poster-Discussion Sessions and twelve Lecture Sessions all of them guided 
by two Chairmen. The general topics are as follows: 

o Dynamic structural engineering problems, including buckling and nonconservative 
phenomena, 

o Analysis of nonlinear dynamic systems, especially by computer methods like cell 
mapping, 
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o Bifurcation Problems, featuring the global system behavior, 

o Chaotic Dynamics and Control Problems with application to flexible robots, 

o Experimental and Theoretical Investigations of resonance phenomena, 

o Chaotic Oscillations of Engineering Systems, that means we are interested in the 
diagnosis or supression of chaos in engineering applications, 

o Characterization of Nonlinear Dynamic Systems by fractals known from 
mathematics, and other criteria, 

o Nonlinear Stochastic Systems, including simulation, stability, and application in 
offshore engineering. 

After this survey on the scientific aspects of the Symposium let me speak on our 
sponsoring organization the International Union of Theoretical and Applied Mechanics, 
abbreviated as IUTAM. At the time being, IUTAM is the scientific umbrella organization 
of 38 national adhering organizations, one of which is the "Deutsches Komitee fUr 
Mechanik" representing the Federal Republic of Germany. The General Assembly of 
IUTAM, a body of nearly one hundred leading scientists from all over the world, 
approved this Symposium in 1986 in London. A Scientific Committee of highest 
international reputation was appointed, responsible for the scientific programme. It is 
my pleasure to report that all members of the Scientific Committee except one are 
present and that the Committee will continue its devoted service for the Symposium 
during this week. 

In 1967, exactly twentytwo years ago, the first IUTAM Symposium was held in Stuttgart 
under the chairmanship of Professor Ekkehart Kroner. This first Symposium was 
devoted to the "Generalized Cosserat Continuum and the Continuum Theory of 
Dislocations with Applications". Twelve years later in 1979 the second IUTAM 
Symposium took place in Stuttgart. Professor Richard Eppler was chairman of the 
Symposium on "Laminar-Turbulent Transition". Thus, in a quarter of a century 
altogether three IUTAM Symposia were held at the University of Stuttgart in all the major 
fields which are Solid mechanics, Fluid mechanics and Dynamics. 

But there are also other relations between the University of Stuttgart and IUTAM. From 
1950 to 1963 Professor Richard Grammel of Stuttgart represented his country in 
IUTAM's General Assembly. Since 1984 I am serving myself as the Union's 
Secretary-General. And 1987 the annual Bureau meeting of IUTAM was held in 
Stuttgart including a visit of Kepler's birthplace in the nearby city of Weil der Stadt, one 
of the roots of mechanics as a science. 

Last but not least I would like to thank all sponsors of this Symposium, namely, the 
University of Stuttgart and the State of Baden-Wurttemberg, the City of Stuttgart, and 
the industrial companies Robert Bosch, Stuttgart, Daimler Benz Corporation, Stuttgart, 
and MAN. Technology, Munich. 

And very personally, I express my gratitude to all my co-workers of the Institute B of 
Mechanics for their devoted and engaged work. This work started more than one year 
ago and culminated last week. Especially, I would like to mention Professor Kreuzer 
who left the Institute to be a Professor at the Technical University Hamburg-Harburg. 
But even from this distance, Professor Kreuzer contributed much to the preparation 
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of the Symposium. If you have any problem, please feel free to contact anybody of 
the Institute's staff, indicated by yellow dots on the name tag. 

So, I wish you that this Symposium may stimulate and satisfy your scientific interests 
and offer you many opportunities to personal contacts with scientists from more than 
20 countries active in Nonlinear Applied Dynamics. I thank you. 

Logo of the Symposium 
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Lyapunov Exponents and Stochastic 
Bifurcations 

S. T. Ariaratnam and Wei Chau Xie, 
Solid Mechanics Division, 
Faculty of Engineering, University of Waterloo, 
Waterloo, Ontario, Canada, N2L 3Gl. 

Summary 

The influence of stochastic perturbations on the bifurcational behaviour of dynami
cal systems commonly occurring in engineering mechanics is studied. Two types of 
bifurcation are discussed, namely pitchfork bifurcation and Hopf bifuI'cation. The 
results are applied to examples in the dynamic stability of elastic systems. 

1. Introduction 

The paper investigates the influence of stochastic perturbations on the bifurcational 

behavioUl' of dynamical systems that exhibit pitchfol'k and Hopf bifurcations. Most 

studies of nonlinear stochastic dynamical systems have dealt with the case when the 

systems are externally excited. However, in problems of bifurcation the excitation 

appears in the form of a coefficient or a parameter in the governing equations of 

motion. The stochastic stability of such a system is governed by the sign of the larg

est Lyapunov exponent of the corresponding linearized system. The Lyapunov 

exponents are related to the average exponential mte of growth or decay of the 

response of the system. When all the Lyapunov exponents are negative, the trivial 

solution is stable with probability 1 (w.p.I); if the largest Lyapunov exponent is 

positive, the trivial solution of the system loses its stability, implying that the van

ishing of the largest Lyapunov exponent is an indication of a bifurcation or a change 

in the nature of the response. 

In nonlinear systems it is of interest to study the steady-state solutions in the vicin

ity of bifurcation. When the parameter of the system fluctuates, the analogue of the 

steady-state solution is the stationary solution in the stochastic case. The following 

questions will be examined in this paper: (1) What does bifurcation mean in stochas

tic systems? (2) Does the bifurcation point shift and in which direction as a result 

of stochastic perturbations? (3) What is the form of the bifurcating solution? 

Two examples of stochastic bifurcations commonly arising in problems in the 

dynamic stability of elastic systems will be illustrated in the following. 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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2. Stochastic Pitchfork Bifurcation 

The basic system considered is governed by a nonlinear differential equation of the 

form 

ij + 2(3iJ - 'Y'y + ay3 = 0, ex, (3)0, (2.1) 

in which "I' is the dimensionless bifurcation parameter. As "I' changes from negative 

to positive values, the system undergoes a pitch-fork bifurcation from the stable 

trivial state y=O. When the parameter "I' is perturbed by a stochastic process, the 

equation governing the motion of the perturbed system will be of the form: 

ij + 2(3iJ - b' +o-.;(t)] y + ay3 = 0, (2.2) 

where .;(t) is taken to be a 'unit' white Gaussian noise process. Examples of this 

equation are found in many applications in mechanics, particularly in problems of 

dynamical stability of elastic systems. In particulat·, the transverse vibrations of 

columns or flat plates under axial loading or end displacement are governed by equa

tion (2.2). 

2.1 Lyapunov Exponent 

To examine the stochastic stability of the trivial solution, it is necessary to deter

mine the variation of the largest Lyapunov exponent Ay of the linearized system 

ij + 2(3iJ - b/+o-';(t)]y = 0. (2.3) 

Applying the transformation y =exp {-(3t}x, equation (2.3) becomes 

x + b-o-.;(t)]x = 0, (2.4) 

or, in the form of a pair of Ito equations, 

(2.5) 

where 'Y=-'Y'_(f2, W(t) is a 'unit' Wiener process. The Lyapunov exponents of sys

tems (2.3) and (2.5) have the relationship Ay = -(3+Ax ' The Lyapunov exponent of 

system (2.5) is defined by 

(2.6) 

By setting SI=Xl/llxll=cos¢" s2=xz/llxll=sin¢" Ilxll=(xr+xi)I/2, and employing a 

well-known procedure due to Khas'minskii [1], the largest Lyapunov exponent is 

given by 
2,.. 

Ax= E[Q(s)] = jQ[s(¢,)] 11-(¢,)d¢" (2.7) 
o 

where Q [s( ¢')] = (1---"{)sin¢,cos¢,+ ~ cos2¢'cos2¢'. 11-( ¢') is the density of the invariant 
2 
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measure of the process <fJ( t) with respect to the uniform measme on the circle and is 

the solution of the Fokker-Planck equation associated with the <fJ(t )-process. The 

largest Lyapunov exponent >-.'" is found to be 

Explicit evaluation of this integral does not seem feasible. Applying methods for 

asymptotic evaluation of integrals (Copson [2], Hsu [3]), it can be shown that, as 

(J"-+O, 

>-. _~ c? 1+, '" - -')' + ') ( )2" <0. 
~ 1-,), 

(2.9) 

When ,=0, equation (2.8) can be evaluated tiirectly and the exact value of the larg

est Lyapunov exponent is >-.'" =0.289310"2;3, a result similar to that of Pinsky and 

Wihstutz [4]. 

Numerical values of >-.'" were calculated from (2.8) as , changes from negative to 

positive values and are shown in Figme 1. The asymptotic results were found to 

agree well with the numerical results. 

It can be seen easily that in the vicinity of ,=0, the stochastic perturbation desta

bilizes the system; thus, the value of " at which the trivial solution y=O loses its 

stability shifts to the left for undamped or slightly damped systems. 

2.2 Bifurcating Solution 

In order to study the bifurcating solution, setting the energy E=1/2+u(y), where 
y 

u(y)= J h'z+az3 )dz = ,'y2/2+Cl:ll/4, one obtains in place of (2.2) the two fluctua
o 

tion equations: 

if = {2[E_u(y)]}1/2, E = -4,8[E-u(y)]-(J"y{2[E-u,(y)]}!/2€(t). (2.10) 

Let ,8, c? be O(f). Then method of stochastic averaging (Khas'minskii [5]) may be 

applied to (2.10) and the averaged equation for E becomes 

(2.11) 

where 
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The region R of integration includes all values of y for which E?u (y). 

The stationary probability distribution p(E) is governed by the associated Fokker

Planck equation and is found to be given by 

c {E ME(z) } 
p(E) = -2 exp 2 J -2-dz , 

(TE E, (TE(Z) 
(2.12) 

where C is determined by the usual normalization condition. 

Equation (2.12) was first evaluated numerically for different values of "i' to obtain 

the energy distdbution. An intel·polation algodthm was then applied to evaluate 

numerically the location of the centroid of the energy distribution that is given in 

the form of discrete points. The results for the mean energy are plotted in Figure 2, 

in analogy with the deterministic case. It may be noted that the stochastic bifurca

tion points for the nonlinear system (2.2), namely the points where the mean energy 

of the system becomes nonzero, are to the left of the points where the trivial solu

tion loses stability w.p.I. This is due to the fact that the mean energy if contains 

the second and fourth moments of the response of the system (2.2), which are more 

unstable than the sample solution of the linearized system (Kozin and Sugimoto [6]). 

!3=0.05 

CT=0.3 

-0.2 -0.1 

=~--=-=---- -0.05 
CT=O.l 

Fig. 1 Lyapunov exponent >'. vs "I 

ii + 2!3!i - [7'+CT€(tl] y=O 

3. Stochastic Hopf Bifurcation 

-0.3 -0.2 -0.1 0.0 0.1 0.2 

Fig. 2 Bifurcation diagram 

Locus of points for which >',=0 

Locus of points of stochastic bifurcation 

A typical system exhibiting Hopf bifurcation may be described by the differential 

equation: 

x + [,B+(T€(t}]i + x = f(x,i,€(t)), (3.1) 
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where €(t) is a 'unit' Gaussian white noise, f(x,i,€(t)) a nonlinear function, and (3 is 
the bifurcation parameter. For example, the vibration of transmission cables, 

suspension bridges and buildings under the turbulent wind loads is governed by 

equation (3.1) (Blevins !7]) with 

f(x,i,€(t)) = f: [A2k+l+<l2k+la€(t)]i2k+l. 
k-l 

3.1 Lyapunov Exponent 

The linearized equation of motion is 

x + !(3+a€(t)]i + x = O. 

or, in the form of the Stl'atonovich stochastic differential equation, 

d*Xl = x2dt, d*X2 = - (Xl + (3x2)dt - aXzdW, 

(3.2) 

(3.3) 

where d*( ) denotes the differential in the Stratonovich sense. The equivalent Ito 

equations are: 

(3.4) 

For this system, following a procedure similar to that described in section 2, the 

largest Lyapunov exponent is found to be given by 

o p( ., , U +00 p( .. , U J &i-e-vIi(u)du J f(v)evli(lI)dv + J &i-e-"Ii(u)du J f(v)evli(v)dv 
_oof(u) -00 0 f(u) 0 

A = 0 U +00 U ' (3,5) 
J _l_e-vli(u)du J J(v)evli(lI)dv + J _l_e-vli(u)du J J(v)e"Ii(II)dv 
_oof(u) -00 0 f(u) 0 

where 

2 
V=-

dl' 
1 

h(u) = u--, 
u 

2/1_,,· --.-
f(u)=u " , P(u) = _1_(~_(3), 

l+u2 l+u2 

Asymptotic evaluation by the Laplace method gives 

A = - (3/2 + dl /8, as a -+0. 

It is obvious that the stochastic perturbation destabilizes the system, 

3.2 Bifurcating Solutions 

The nonlinear system considered is of the form: 

x' + !(3+a€(t)]i + x = f: !A2k+l+<l2k+la€(t)]i2k+l, 
k-l 

The tl'ansformation x = asinO, i = a cosO, 0 = t +</J, results in 

(3,6) 

(3,7) 
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ci = acos20 [-,8 + f: A2k+la2kCOS2kO + ( -1 + f: <l2k+la2kcos2k8) ae(t)] , 
k-l k-l 

. [n n (3.8) 
¢ = cos8sin8 ,8 - :E A2k+la2kcos2k8 + (1-:E <l2k+la2kcos2k8) ae(t)]. 

k-l k-l 

Let A 2k+1, <l2k+h ,8, dl be o(€). Applying stochastic averaging leads to the Ito 

equations: 

da = madt + EaadW, + Ea~dW2' 
d¢ = m~dt + E~adWl + E~q,dW2' (3.9) 

It can be shown that the equation for a is decoupled from that for ¢, and the first 

equation is equivalent to 

where 

E~ = ~ dla2 + f: dla2k+2[Sl(k )a2k -S2(k)] , 
k-l 

• 3 -2 1 
A = -u-_-R 

1 16 2 /J, 

(3.10) 

Bl(k) = ~::~ {(2k+1)Eo e kt2)2 +2(k+l)[E) 1+(2ktlYl -2 E~eik.01)]}, 

B2(k) = 2~::1 [(k+1)ekt 2)+2ekt 1)] , 

~~ k 2 
S (k) = ~~ (2k:J-2) 

1 24k+3 L.J ~ , 
i-a 

S (k) = <l2k+l (2k+2) 
2 4k+1 k ' 

( ) n! 
~ = k!(n-k)!' 

Setting p =In la I =Inllxll and applying Ito's Lemma results in 

1 
dp=mpdt + -EadW, 

a 

where 

(3.11) 

The Lyapunov exponent of the system is given by the coefficient of the dt term in 

the linearized form, i.e. A = -,8 /2+dl /8, which is the same as that obtained above. 
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The steady state probability distribution p(a) satisfies the Fokker-Planck equation 

associated with (3.11) and is given by 

c {a ma(u) } 
pea) = -2 exp 2 J-2-du 

Ea a,Ea(u) 
(3.12) 

The most probable amplitude Ii is obtained from the equation 

f: {[B 1(k)-(2k+1)Sl(k)la2a4k +{A2k+1+ [(k+1)S2(k)-B2(k)Ia2}a2k } + ~( ~ -(3)=0. 
k-l 

When the effect of stochastic perturbation in only the linear term is considered, 

~k+l=O for k=I,2, ... ,no If the effect of stochastic perturbation in both linear 

and nonlinear terms is taken into account, ~k+l is usually of the form ~k+l =2k-l 
in the study of the wind induced vibration of transmission cables. For both cases 

the diagrams of stochastic bifurcation are plotted in Figures 3-4 for n =2, 3. 

." 
'" "'" '" ~ 
"-

~ 
'" :g 

.l> 
0 .. 

tl.. 
+> 
III 
0 
~ 

3.0 

2.0 

1.0 

A3=-0.055 

A&=O.OI 

.8=0.05 .. ' ....... 

....... 

) 
2.0 

1.0 

A3= -0.062 ('.::." 

A6=O.05 "\ 

A7=-0.0l 

.8=0.05 
..... 

0.0 I_~ __ ~--+_~~~_~~~ 0.0 -I--~_~--I-_~~_~_.~. 
0.0 4.0 8.0 12.0 16.0 20.0 4.0 8.0 16.0 20.0 

0-2/.8 

Fig. 3 Stochastic bifurcation diagram Fig. 4 Stochastic bifurcation diagram 

a2k+l=0 

a2k+l=2k-l 

a2k+l=O 

a2k+I=2k-l 

From the above results, the following observations can be made: 

(1) When a25:.4{3, Amax 5:.0, therefore p(a)=o(a). 

(2) When 4{3<a2<8{3, Amax>O, the tl·ivial solution is unstable w.p.l, pea) is a 

hyperbola-like function, and the most probable amplitude is OJ 

(3) When ac>8{3, the most probable amplitude Ii becomes nonzero and can be 

observed. From the physical point of view, the Hopf bifUl"cation of the 

parametrically perturbed stochastic system takes place at a2=8{3j 
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(4) When cr>8/3, for n =3 and some values of nonlinear coefficients, the p(a) 
curve can have two peaks, i.e. p (a) becomes a bimodal function and has two 

most significant most probable values; 

(5) For n =2, A3<O, As>O, the nonlinear system is unstable in probability near 

the bifurcation point when only the effect of stochastic pertmobation in the 

linear term is considered. However, if the effect of stochastic perturbation in 

both linear and nonlinear terms is taken into account, the nonlinear system is 

stable. Therefore, the stochastic perturbation in nonlinear terms stabilizes the 

sysLem, which is true for other values of n and nonlinear coefficients as well; 

(6) For n =2 and when the coefficient of stochastic perturbation in nonlinear terms 

is considered, p(a) can also have two significant most probable values. This is 

due to the fact that the parametric stochastic perturbation in the nonlinear 

terms introduces a correction term O.5f(a,4»B f(a,4»/Ba into the system equa

tion. This is a noise-induced phenomenon and cannot be observed in the deter

ministic case. This phenomenon indicates that the stochastic perturbation in 

Lhe system, although small in magnitude, can change the behaviour of the sys

tem qualitatively. The result is of practical importance in stochastic modelling. 

In order to model certain properiLies of a system propeloly, the nonlinear terms 

of the system considered can be much simplified if the effect of stochastic per

turbation is taken into account. 
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Liapunov Stability Analysis for Control 
of Flexible Manipulators 

S. Arimoto*) ,H.G.Lee**), and F.Miyazaki**) 

*)oept. of Mathematical Engineering and Instrumentation Physics, 
Fac. of Engineering, Univ. of Tokyo, Tokyo, 113 Japan 

**)oept. of Mechanical Engineering, Fac. of Engineering Science, 
Osaka University, Osaka, 560 Japan 

Summary 

A mathematical model of the dynamics of a multi-link flexible 
manipulator is derived by using Hamilton's principle. It is des
cribed by a bundle of nonlinear coupled partial differential equ
ations with nonhomogeneous natural and geometric boundary con
ditions. Application of Galerkin's modal expansion method for 
this model yields a nonlinear lumped-parameter differential equ
ation with finitely large or infinite dimension including cen
trifugal and Coriolis forces. Stability of PO and POS(PO+ Stra
in) feedback control schemes is discussed on the basis of Lia
punov's method applied for the lumped - parameter model. 

Modelling of Flexible multi-link Manipulator 

Suppose that a manipulator is composed of p flexible links and 

p rotary joints and moves in three dimensional space without gra

vitational effect, for simplicity. Rigid-body motion and elastic 

behaviors are controlled simultaneously by only OC motors which 

are located at each joint. It is assumed that each joint is ri

gid and can be considered to be a concentrated mass as well as 

the end effector, and the root of each link is attached to the 

joint axis. The local coordinates for link i is defined as 

xiYizi shown in Fig.l, that is, the origin of link i is set up 

at the center of joint i, the trangential line at the root of 

link i is in xi direction, the rotational axis of joint i is zi, 

and the axis orthogonal to xizi plane is Yi. It is also assumed 

that each link is a slender beam with symmetric cross section, 

its elastic deformation is small, and the longitudinal deformat

ion can be negligible. These assumptions have been generally 

accepted in the case of small oscillation. 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Soringer-Verlag Berlin Heidelberg 1990 
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After an elastic deformation,the 

position vector of a nominal po

int S on the center line of link 

i in terms of local coordinates 

xiYizi can be expressed by using 

Denavit-Hartenberg's description 

Fig.l 

where vi(xi,t) and wi(xi,t) are 

Center Line 
of Link 

Coordinates system for 
flexible multi-link manipulator 

deflections in Yi and zi directions at point xi and time t res

pectively. Symbol "T" means transpose. Furthermore, the posi

tion of S in terms of the fixed coordinates xoYozo shown in Fig. 

1 can be expressed by using the transformation matrix 0Ai defined 

by the following way: 

j-iAj = Trans [Lj-l,Vj-l (Lj-l,t) ,Wj-l (Lj_l,t)] 

x Rot[Z,vj_l(Lj_l,tl] x Rot[y,-wj_l(Lj_l,t)] 

x Rot[z,8j], for j = 1,2,···, p, (1) 

where 8j' Lj' and ¢j(Lj,t) are relative rotational angle of joint 

j, the length of link j, and the torsional angle about axis Xj 

respectively. The prime symbol means differentiation with respct 

to Xj' and Rot[a,¢j] is a transformation for the structual con

figuration of joint-link fittings, in which a is generally one 

of Xj' yj' Zj' and ¢j is either 0 or 90 degree. It should be 

noted that, unlike a rigid manipulator, these transformations in

clude the elastic deformations at the end of each link. In eg. 

(1), the order of the rotational transformations due to elastic 

deformation is changeable, because of small displacements. 

The velocity of point S is given by 
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(2) 

and the kinetic energy of link i is described as 

(3) 

where o{xi) and fi denote the distributed mass and the unit kine

tic energy function respectively. The potential energy due to 

the elastic deformation of link i is given by 

lJLi "2 "2 Vi = 2) 0 {El z (xi) (v i (xi» + Ely (xi) (w i (xi» 

+ GJ (x i) {CP' i (x i) ) 2} dx i ( 4 ) 

where El z ' Ely, and GJ are bending stiffness of zi, Yi direction, 

and torsional stiffness, respectively. Therefore, the total ki

netic energy and the total potential energy are expressed as 

follows: 
p 

K=2. Ki, 
i=l 

p 
V = 2. Vi 

i=l 

On the other hand, virtual work for external torque Ti is 

p 
ow=E Tio8i 

i=l 

(5) 

(6) 

Hamilton's principle for energy equations described above and 

geometric boundary conditions determined by definition of local 

coordinates [1] are expressed by the forms 

{
t2 

o (K - V + W) dt = 0, 
tl 

which yield the following variational equations 

for i = 1,2, •.• ,p: 

(7) 
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(9.1) 

(9.2) 

(9.3) 

(9.4) 

(10.1) 

(10.2) 

(10.3) 

(11.1) 

0, (11. 2) 

where 

d (lK (lK 
FXi = dt [ (lx' 1 - (lxi 1 

(12) 

d Hi Hi 
Mxi = dt[ax· 1 - aXi 1 

(13) 

Since the values of variations are arbitrary, each coefficient 

term in the above equations must vanish. Hence, three nonlinear 

partial differential equations (NPDE) and their natural boundary 

conditions (NBC) for each link are obtained. They are one NPDE 

(9.1) and three NBC's (9.2-4) for bending around z, one NPDE 

(10.1) and two NBC's (10.2,3) for bending around y, and one NPDE 

(11.1) and one NBC (11.2) for torsion around x. 
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Galerkin's Modal Expansion 

Since these derived NPDE's are nonlinear and coupled each other 

and NBC's are nonhomogeneous, it is hard to obtain analytical 

solutions. Even if these equations are linearized, it is also 

hard to obtain the eigenvalues and eigenvectors analytically. 

Hence, we must apply Galerkin's modal expansion method by expre

ssing the elastic deformations of each link by 

N 
V" (X" t) = ~ S"" (X")q"" (t) 1 1, ~ 1J 1 1J 

N 
<Pi (xi, t) =:£. si2N+j (xi) %2N+j (t) 

j=l 

(14.1) 

(14.2) 

(14.3) 

for O~xi~ Li(i=1,2, •.. p), where Sij(Xi) are admissible functi

ons satisfying all the geometric boundary conditions and differ

entiability on ° ~ xi ~ Li, qij (t) are unknown modal functions, 

and N is a number of order sufficiently large so that this app

roximation is in effect. 

Since the eigenfunctions of a clamped-free beam obviously satis

fy the GBC's of eq. (8) ,it is acceptable to choose them as admi

ssible functions. Therefore, by using eq. (14) and orthogonali

ties of eigenfunctions of the clamped-free beam, all of GBC's, 

NPDE's and NBC's derived above become a bundle of ordinary diffe

rential equations, i.e., a lumpled parameter model. This can be 

described in the following way, if structural damping terms for 

the elastic modes qij are taken into account: 

•• • • aK • 
Rx + Rx - (ax) + D*x + r/*x = Bu (15) 

where x= [xi, x~lT, x r = [8l, ... ,8 p l T , Xe= [qll, ... ,q13N,qpl, 

... , qp 3Nl T , R(x) = RT(x) > 0, \"/* = diag [0, ... , 0, r/1l"'" 

r/~ 3Nl, D* = diag[O, ..• ,O,dll,'" ,dp 3Nl, B =[Ip OlT, and 

u = ["fl, ... ,TplT. Here, K = +XTR(X)X is the kinetic energy in 

the modal space form of eq. (5) and R(x) is the inertia matrix. 
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Q.. d" > 0 and I are respectively eigenvalues for the consi-
1) , 1)' P 

dered clamped-free beam, coefficients of structural damping, 

and p x p unit matrix. Each matrix has an appropriate dimension 

corresponding to the state variable x. 

PDS Control 

The torque 'i transmitted from the actuator (DC motor) to the 

root of link i can be described by 

(16) 

where Joi and "si are the inertia of each driving system and the 

generating torque of each actuator, in which the induced electro

motive force and the friction force of driving system are inclu

ded. The torque 'i is balanced with the bending moment Mi(O,t) 

around axis zi at the root of link i, which implies 

(17) 

From the assumption of small elastic deformation, it follows that 

( 18) 

where Piz, £i(x,t), and hi are a curvature due to bending, a st

rain on the link surface, and a distance in the direction of zi 

from the center line of link i to the surface respectively. Th

erefore, if a strain gauge is attached to the root of link, the 

output can be described by 

YFi· (19) 

We now consider the PDS control first introduced by one of the 

authors [2], which is composed of a conventional PD control and 

a feedback of strain detected at the root of the link. This is 

given by 

(20) 

( 21) 
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The first term in the right hand side of eq. (20) represents the 

strain feedback and the second term does the PD control. xrd is 

a desired position vector composed of rotational angles of joints. 

Stability Analysis via Liapunov's Method 

Theorem The closed-loop system with the PDS control described 

above is asymptotically stable, if 

P > 0, PGp > 0, PGv > 0, (22) 

where 

P = diag[!31, •.• ,!3p]' (23) 

Proof It follows from eqs. (16) , (19) , (20), and (23) that 

(24) 

Substitution of this into eq. (15) yields the closed-loop system 

'Rx+ Rx- (dK) + Dx+ TI(x- xd) = 0 (25) 
dX 

where xd = [xfd, 0] T, J o = diag[Jol, ..• ,Jop ] > 0, 

... , 
o ] > 0, 
D 

2 
Qp3N], D= 

n = [PGp 
o 

diag [dll, •.. , d p 3N] , 

g ] > 0, R = [Pgo g] + R > o. 

Now we introduce a candidate of Liapunov function[3] 

L = +{XTR (x) x + (x -xd) TIT (x - xd) }. (26 ) 

After taking the derivative of L along the trajectories of eq. 

(25) and careful manipulation of resultant equations by refering 

to the relation (see [4]) 

xTR(x)x=xT ddX {xTR(x)x}, 

we obtain 

Then, it follows from LaSalle's theorem that the equilibrium 

point [x = xd, x = 0] of eq. (25) is asymptotically stable. 

(27) 

It is evident from this proof that, since ui= 0 for all i implies 

P= Ip, the conventional PD control without use of the strain 

feedback is also asymptotically stable. 
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Remarks and Discussions 

What kinds of effect in stabilization does strain feedback yield? 

To respond to this question, suppose that PD gains are taken to 

be large correspondingly to the strain feedback gains. That is, 

ui are chosen to be large, diagonal components of P small, and 

those of Gp and Gv large so that PGp and PGv are fixed. Then PJ6 

(a principal minor of R) in the Liapunov function L of eq. (26) 

becomes small while nand D in eq. (26) and eq. (27) respectively 

are fixed. This implies that a large remaining vibration 
(big I xr I around xr = xrd) due to elastic vibrations contributes 

to mainly a certain decrease of the vibrational kinetic energy 

(x~ Rxe )/2 and the quadratic deviation (X-Xd)Tfi(x-Xd)/2. In 

other words, strain feedback is effective in suppression of the 

elastic vibration and acceleration of the positioning stabili

zation. This is demonstrated by experimental results reported 

in our previous paper [5]. 
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Nonlinear Effects in Dynamics of Controlled 
Two-legged Walking 

v.v. BELETZKY 

Keldysch Institute of Applied Mathematics 
USSR Academy of Sciences 
Miusskaya pI. 4, Moscow 123047, USSR 

Summary 
Resonance of regular walking is evident: elements of a two-legged (or multi-legged) 
device oscillate in time with walking. In other words, oscillation frequencies of separate 
elements are commensurable with a basic frequency - the step frequency. Numerous 
studies of the two-legged walking process deal with describing mainly a regular periodic 
walking. However, in order to reveal specific nonlinear effects regular resonant walking 
should be analysed together with its nonresonant neighborhood. Some results of this 
analysis carried out by the author and his colleagues are discussed in this report. 

Introduction 

A nonlinear model of the periodic two-legged walking, which has in some sense the 

stability property, is constructed. The neighborhood of this stable periodic motion is 

considered within nonlinear formulations. In this neighborhood the walking is of a 

conditionally periodic or irregular chaotic nature. An integral characteristic of energy 

consumption for walking is introduced. It is shown that the energy functional has an 

extremum for the regular resonant walking. The extremum may be a minimum - then 

the periodic stable walking is more advantageous from the energy point of view in 

comparison with the irregular walking. 

However, bifurcation of energy-advantageous methods of walking is possible when the 

system parameters are varied. The energy functional acquires a number of local 

maxima and minima. In this case, we may observe inconvenient and 

energy-unfavourable irregular gaits; convenient "comfortable" gaits but with a local 

energy maximum; and, finally, energy-advantageous, not necessarily convenient gaits 

with a local minimum. 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
I UTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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Fig.1. Apparatus model: rigid body with two imponderable legs 
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Dynamical Model of Walking 

The body oscillation equation at the given translational movement x = x(t) , h = const. 

and given foot placing xv(t) , see also Ref. [1], reads as 

[1 + fl2 (cosO-I) + fl1 (A. cp(r) + x) sin 0] 0 " 

+ [fl1 (A. cp (r) + xl coso - fl2 sinO] 0'2 

- sinO + [fl1 cosO + fl2] x" - (A. cp(r) + xl 0 

Here, the abbreviations are introduced as 

A. cp (r) + x = (x -xv)! Q; 

A. = LIQ; 
cp (r) = r/ro - [r/ro] - a ; 
a = slL = const.; 

dr = wdt; 

ro = wT; 
w = I MgQ / [ J + MQ (Q + /z)]] 1/2; 

fll = MQ2/[J + MQ (Q + h)]; 
fl2 = MQh/[J + MQ (Q + h)]. 

Designations of symbols, see also Fig. 1: 

x,xv,h, L, s, Q, 0 - geometrical quantities and variables; 

M 

J 

T 

u,q 

- mass of the body; 

- central moment of body inertia; 

- step duration; 

- controlling moments of forces, they are expressed by the finite 

formulas over the motion. 

Conditions of Walking and Analysis 

Two conditions of walking are considered. 

I) Comfortable (straight-line uniform) motion of the suspension point, x = O. 

II) Stabilized motion: x is chosen from the conditions of translational motion 

stability and body oscillations. 
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Construction of stabilized motion : 

9 (t) - periodic motion from condition I, 

9(.,;) = 9 (.,; + 7) , 

{} = (J-9(.,;). 

Linearized equations of the body oscillation and the back coupling equation read as 

{}" + (a $0 - 1)iJ + (a $1 - 1)" = 0, 

" " - $0 {} - $1" = 0, 

a = #1 + #2, 

$0, $1 - parameters of the back coupling. 

Then, the stability conditions are found as 

0$0 - $1 - 1 > 0; 
$1 > $0; 

(0$0 - $1 - 1)2 - 4($1 - $0) > O. 

The stable region is shaded in Fig. 2. 

Fig. 2 Stability diagram 

~o 
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Investigation of condition I . The motion is natural unstable. Control creates only straight 

- line uniform (comfortable) motion of the legs' suspension point. 

In this case the possible motions of the body are represented by point mappings in the 

phase plane e, e ' . Mappings made at the beginning of each step. 

The results for different parameters are shown in Fig. 3 to Fig. 6. 
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Fig. 3 

Condition I: III = D.I,1l2 = O.3;A = I. Small step. Low velocity. Stable motions 

with the body "head down" and the different periodic body rotations. There are many 

islands in the sea of chaos. 
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Fig. 4. 

Condition I. A = 7,25. Further increase of step size and velocity. The first bifurcation: 

the island with the stable oscillations is divided on two -"head forward" and "head back". 
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Condition 1. A. = 9. Left, in the centre appears an unstable solution; trajectories going 

away from it tend to join the loop in the right part. Right, in the centre an asymptotically 

stable solution occurs. 
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Condition I. A = 11. The next bifurcation. The stable oscillation "head up". 
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Condition II . The nonlinear equation ofthe body oscillations together with the equation 

ofthe back coupling are integrated for stable parameter conditions. The work which had 

been spent on walking and stabilization is calculated and presented in Fig. 7, where 

W = ~LJ~[I q(iJ-a) 1 + 1 u(a-/f> I] dt, 

N - number of steps. 

w 

-0.05 o 0.05 11' 

Fig. 7. Work depending on initial condition. 

The work depends on the initial conditions of motion. The coordinate origin satisfies the 

periodic comfortable motion. A minimum of work is found for the periodic stable motion. 

There occurs a bifurcation of the periodic oscillation (with period doubling) at the para

meter variation. Two period motions are shown in Fig. 8. 
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0.2 

8 

Fig. 8. 

Condition II . Single and four periodic body oscillations. 
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1/2 Subharmonic Resonance and Chaotic 
Motions in a Model of Elastic Cable 
F. Benedettini and G. Rega 

Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno 

Universita de11'Aqui1a, Monte1uco Roio, 67040 L'Aquila, Italy 

SUMMARY 

The finite motions of a suspended elastic cable subjected to a planar 
harmonic excitation is studied through one ordinary equation with 
quadratic and cubic non1inearities. The onset of chaotic motions in the 
neighbourhood of the 1/2 subharmonic resonance condition is analysed via 
numerical simulations. 

INTRODUCTION 

Non linear forced vibrations of a suspended elastic cable under 

primary or secondary resonance conditions have attracted some interest 

in recent years [1-3] because of both their theoretical interest 

associated with the occurrence of quadratic and cubic non1inearities in 

the equations of motion and of their engineering relevance. 

Since the "strange" behaviour of dynamical systems is often 

associated with the loss of stability of secondary responses [4], there 

is strong technical interest about the analysis and understanding of 

possible chaotic regimes for the cable. Referring to a one d.o.f. model 

of cable subjected to a planar harmonic forcing and starting from solutions 

obtained for the 1/2 subharmonic oscillations, a numerical investigation 

is made-to obtain chaos charts and identify the mechanisms of transition 

from periodic to chaotic regimes. 

EQUATION OF MOTION AND 1/2 SUBHAru~ONIC OSCILLATIONS 

The mOderately large oscillations of a parabolic elastic cable 

suspended between two fixed supports at the same level can be described 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
1 UTAM Symposium Stuttgart/Germany 1989 
© Springer·Verlag Berlin Heidelberg 1990 
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by the unique partial equation in the vertical displacement v(x, t) [1] 

1 / J 2 . 
{Hv' + EA 1 . (y' + v') [y'v'+ v' /2] dx}' + p - Ilv m~, (1) 

o 

where p(x, t) is a vertical distributed load and EA, H, m and ~ are the 

axial rigidity, the initial tension, the mass and viscous damping 

coefficient per unit length respectively. Equation (1) is accurate for 

studying suspended cables used in overhead transmission lines. Using 

nondimensional quantities, representing the displacement through one 

linear eigenfunction and considering a monofrequent harmonic excitation 

with given spatial distribution, the application of the Galerkin method 

leads to one ordinary equation of motion 

p* cos nt (2) 

which exhibits both quadratic and cubic nonlinearities. 2nd-order pertur

bation solutions obtained in the neighbourhood of the secondary resonance 

condition of order one ha1f(0 = 2) [3] give the frequency - response 

relationship for the 1/2 subharmonic plotted in Fig. 1b for an actually 

sagged (thin) and a nearly taut (thick) cable. Regions of non-existence 

(I), existence (II) and possible existence (III) of the stable subharmonic 

in the parameter space (0, p) of the excitation are plotted in Fig. lao 
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For a sagged cable exhibiting a softening frequency-response curve, 

the approximate solution shows possible existence of a response with pe

riod 2 also at frequency values notably less than the nominal perfect tun

ing. Instead, some numerical integrations of equation (2) show that the 

response is actually of period 2 up to a certain frequency value (Q = 1.7) 

while it becomes of period 1 below it, since the 1/2 frequency-response 

curve turns to the right (Fig. 2) and the fundamental harmonic firmly 

prevails in the response right of the primary resonance condition. Thus 

the question arises of what kind of motion actually develops in the region 

between the 1/2 subharmonic and the primary resonance of the system. 

NUMERICAL INVESTIGATION OF THE ONSET OF CHAOS 

Extended numerical simulations have been made on equation (2) by 

considering values of the nonlinear coefficients (c2 = 35.952, c3 = 534.53) 

relevant to the sagged cable. The amplitude and frequency of the excitation 

are varied parametrically as well as the damping ratio,while the initial 

conditions are held fixed. Phase plane portraits, Poincare maps, frequency 

power spectra, Lyapunov exponents, Lyapunov and correlation dimensions 

[5, 6] are used to identify chaotic responses. The numerical integration 

of the equation of motion has been made through a 4th-order Runge-Kutta 

method and checked through the Adams variable step method. Different total 

integration time lengths and time step increments have been considered 

to be reasonably sure that the response obtained is really a steady one 

and that chaos, whether occurring, actually pertains to the differential 

equation of motion and not to a difference approximation of it [7]. 

Attention is focused on the following practical aspects: (a) 

determination of significant regions of chaotic response of the system 

in the control parameters space of the dynamic problem; (b) analysis of 

the system's bifurcations from periodic to chaotic motions; (c) 

computational aspects in the use of the different measures of the dynamics 

for identifying chaotic responses. 

Fig. 3, a chaos chart obtained with a time step increment equal to 

1/200 and by considering 2000 forcing periods, shows the type of response 
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found in the neighbourhood of the 1/2 subharmonic resonance for different 

values of the forcing amplitude. Small dots denote periodic response while 

thick dots mean chaotic response. The boundary curve obtained numerically 

(thick) and separating the lower region of period 1 motions from that of 

period 2 motions shows good qualitative agreement with the 2nd-order per

turbation boundary curves (thin) . For a correct comparison one must remind 

that the numerical results refer to zero initial conditions while the two 

perturbation curves delimitates a region where the period 2 respon~e can 

or cannot occur depending on the initial conditions (Fig. 1a). 

A rather large region of chaotic motions is worthily noticed to occur 

at values of the excitation amplitude less above the threshold to be 

overcome for obtaining a period 2 response. Namely, f.or the cable, due 

to the high values of the nonlinear coefficients, chaos develops at values 

of the forcing amplitude notably lower than those in Ref. [4] and of prac

tical interest. As the forcing amplitude increases, the two regions of 

period 1 and period 2 response extend to the right, consistent with the 

bending to the right of both the frequency-response curve of the fundamen

tal oscillation obtained with a 4th-order perturbation solution [1] and 

with that of the subharmonic oscillation obtained numerically (Fig. 2). 

In the close right neighbourhood of the chaotic region, a band of 

parameter values where regular motions with period other than 2 occur is 

found. To understand the mechanism of transition to chaos, a much thicker 

mesh spacing is considered for the frequency for a fixed value of the 

amplitude (p = 0.04) . Fig. 4a shows the kind of steady state motion obtained 

according to Poincare map and power spectrum: the periodicity of the output 

(period 1, period 2, etc.) is recorded as a function of the frequency. 

Fig. 4b shows the corresponding variations of the two Lyapunov exponents 

of the system. They were calculated by referring to a total time length 

of the trajectory equal to 500 forcing periods, which corresponds to well 

stabilized values of the exponents, and by performing the required 

orthonormalization at each time step of the motion integration. 

Notwithstanding they were obtained with a frequency mesh spacing larger 

and a number of forcing periods notably lower than those used for obtaining 

Fig. 4a, very good qualitative agreement with the indications given by 
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the measures of chaos used therein is observed. In substance, the spectrum 

of the Lyapunov exponents obtained by varying a control parameter proves 

to be a powerful tool for obtaining bifurcation diagrams [8]. 

Nevertheless, construction of these diagrams through Lyapunov exponents 

is more time consuming than through Poincare map and power spectrum and 

these last dynamical measures allow to understand more effectively the 

mechanism of transition from periodic to chaotic motions. 
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By examining the results obtained with decreasing frequency in terms 

of just these measures,a main route to chaos through period doubling 

bifurcations (2, 4, 8, 16 - - - ~ chaos) is observed in Figs. 5a-f. The values 

of the Lyapunov exponents and of the Lyapunov and correlation dimensions, 

DL = 1 - A./A., and Dc = ~~~ (log C(r)/log r) [6], qualify both these last 

two responses as chaotic, though their attractors in the Poincare map 

differ notably. The transition to chaos is smooth, namely it occurs in 

a rather large range of frequency values. Once well-extablished (Fig. 6), 

the chaotic behaviour occurs in a quite large region. 

Some more basic responses with period 6, 7 and 5 are observed prior 

to the extablishing of chaos and meddled with it (Fig. 4), which look like 

giving rise to further independent sequencies of period doubling 
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bifurcations (6-12, 7-14, 5-10-20). With the frequency spacing 

considered, these sequencies seem to be incomplete and the transitions 

to chaos, whether occurring, are observed to be jump phenomena. 

Fig. 6 
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As, by decreasing further the frequency, the left boundary of the 

chaos region is approached (Fig. 4), the transition to the stable period 

1 motions occurs again via a sudden change (jump) bifurcation. 

Nevertheless, a more detailed investigation of what happens in the 

neighbourhood of this boundary (Fig. 7) shows that the transition develops 

in a finite width zone where the response continuously jumps from chaotic 

to period 1: as the frequency is decreased, the chaotic intervals become 
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smaller and smaller while the period 1 intervals extend progressively. 

This behaviour of the system is to be connected with the presumably fractal 

nature of the boundary of the chaos region, according to which different 

attractors of the motion coexist and the response becomes totally 

unpredictable in this range of frequency. 

Some points are mentioned as far as the fractal properties of the 

strange attract or is concerned. A reliable calculation of its correlation 

dimension must pay attention to the minimum and maximum sizes of the box 

covering the attractor, which have to be correlated with the density of 

points in the map. From the computational point of view, calculating the 

fractal dimension through the Dc measure is more time consuming - though 

more reliable - than through the DL measure, since Dc usually needs more 

than a thousand periods to remain unchanged while the A.i values do not vary 

any more after few hundreds of forcing periods. Here Dc was calculated by 

considering 2000 points in the 2D Poincare map and about three points per 

box for the lower r value. It is given in Fig. 8 for three values of damping. 

As expected, Dc diminishes with increasing ~ values, which give rise to 

thinner and thinner attractors in the map. Since the shape of the Poincare 

map does not change with the phase of the forcing function, the fractal 

dimension of the chaotic attractor in the 3D phase space can be calculated 

simply as dc = 1 + Dc [6]: the value dc == 2.36 is obtained. 

log C(r) 
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Fig. 8 



www.manaraa.com

34 

CONCLUDING REMARKS 

For a suspended cable subjected to a planar monofrequency excitation, 

chaotic responses can occur in the range of frequency between primary and 

1/2 subharmonic resonance conditions. Chaos chart and bifurcation 

diagrams were built in the control parameter space of the system and the 

fractal properties of the strange attractors were quantified. Period 

doubling and sudden change bifurcations from periodic to chaotic motions 

were evidenced. The observed unpredictability of the system response has 

to be properly accounted for in technical applications. 
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Sununary 

Our approach has been to develop an analytic description of the basic dynamics 
of the journal bearing, and of its potential instabilities, in a form simple 
enough to identify crucial physical mechanisms. This approach contrasts 
with, but is complementary to, the purely numerical analysis adopted by 
other authors. It permits the establishment of a "birds eye view" of behav
iour in multi-dimensional parameter space at relatively small expense in 
time and effort, with identification of critical regions at which qualitative 
changes in behaviour are to be expected. Such regions may then be explored 
thoroughly by the use of more detailed and expensive numerical models. 

1. Introduct ion 

The journal bearing is widely used in mechanical systems as a support 

mechanism for rotating shafts, and reasonably stable behaviour under a wide 

range of operating conditions is a practical requirement in all cases. The 

complexity of many of the bearing shapes used precludes anything other than 

purely numerical modelling if detailed quantitive results are sought for 

particular bearings. Much qualitative information on the general effect of 

bearing design is, however, obtainable from simple mathematical models in 

which important physical controls may be represented in as simple a way as 

possible. Thus, for example, the effects of geometrical features of the 

bearing shape on the occurrence and extent of cavitation in the lubricant, 

which has been shown to affect stability very strongly, may be investigated 

systematically. 

The dynamics is conveniently described in terms of the motion of the 

mass-centre of the journal, or rotor, which is determined by the interplay 

of the forces acting on it, comprising the external load and the stresses 

exerted by the fluid lubricant. It is usual to assume that the journal, 

almost invariably circular, rotates at a constant angular velocity, W; 

this rotation drives the fluid motion of the lubricant which in turn 

determines the stress at the journal surface. The intrinsic nonlinearity of 

this process is clear; other nonlinearities arise through the action of the 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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load, in general a varying vector quantity dependent on the position of the 

journal. The heartof the problem is the sensitivity of the net force 

exerted by the lubricant on the rotor to relatively minor differences in 

cavitation character and extent, or in geometry. In this paper we consider 

only the simplest geometry and the simplest acceptable cavitation condition 

in order to expose most clearly the qualitative character of the dynamic 

phenomena and their dependence on parameter values. A number of detailed 

investigations have been reported elsewhere [1-3]. 

2. Mathematical Formulation 

Figure 1 displays a cross section of a rigid circular rotor of radius R-c, 

supporting a load W, contained within a rigid circular bush of radius R. 

y 

x 
Fig. 1. A journal bearing in which the rotor centre, A, has displacement e 

from 0, the centre of the bush. Lubricant shown occupying the n-film 

region. 

Motion of the rotor centre is then described by the (non-dimensional) 

equations, [4] 

•• ·2 
c - cifJ ~2 [cosifJ + S~r) 

_ !... [sinifJ _ SF l) 
-2 W 
w 

: } c~ + 2~~ = 

(2.1) 

where is the eccentricity ratio e/c, ~ is the attitude angle relative 

to the flow direction, Fr, Fl are the components in the directions along 

and perpendicular to OA of the total fluid stresses on the journal, and a 

dot denotes differentiation with respect to the non-dimensional time T = 

wt. (By assumming constant w we of course effectively ignore any 

fluctuations in the moments about A of the fluid stresses). Additionally 
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we have introduced the non-dimensional parameters 

S = LR3MW;Wc2 , the Sommerfeld number (2.2) 

and w = w[mc;W]1/2 , a non-dimensional rotation speed (2.3) 

where L is a characteristic length along the rotor (z-direction), ie 

perpendicular to the (e,~) plane. 

In order to calculate the hydrodynamic forces Fr,Fl> the pressure 

distribution p(S,z) within the lubricant must be known. It may be 

obtained from the Reynolds equation, using the usual assumptions of 

lubrication theory, that the flow remain laminar and non-inertial (for which 
2 

we /v « 1 

is sufficient). 

This equation then takes the form, 

~(1 + e cosS)3 ~~} + [Efh{(1 + e cosS)3 ~~} = 6~-dl-2~)SinS + 

where the non-dimensional pressure, p = P/MW [~]2 and the forces 

are given by 

Fr = Jp cosS dS 

taken over the surface of the rotor. 

2~ COSS} 

... (2.4) 

(2.5) 

Further analytic progress with equations (2.4) requires the so called long-

or short-bearing approximations, in which the second or first terms 

respectively on the left hand side are neglected. In either case, we need 

to specify boundary conditions on the pressure, and this is the crucial 

physical question in the modelling of the problem. The difficulty arises 

because of the possibility, for liquid lubricants, of cavitation in the 

diverging region of the fluid flow, downstream of the point of minimum gap. 

In this region, it is possible that the actual pressure in the fluid may 

fall below some "ambient value" at which a cavity may arise through 

vapourisation of the lubricant or gases dissolved in it, or much more 

usually, through "ventilation" - the introduction of air from other parts of 

the mechanical system. 

Stability characteristics of the rotor are very sensitive to the extent of 

cavitation, and to the conditions on pressure assumed at the boundaries of 

any cavity [1]. The simplest model is the so called n-film, which assumes 

that the fluid film occupies the region of convergent flow (0 < S < n), and 

that the divergent region (n < = S < = 2n) is totally occupied by a 

cavity, within which pressure is presumed to be zero (ie atmospheric). 
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Clearly such a cavity moves with the angular position (~) of the rotor and 

is usually called an oscillating n-film. We proceed with this model: 

(1) Long-bearing approximation: set p = 0 at 6 = 0 and n s 6 s 2n 

(2.6) 

We find [5] 

Fr = S{12nE?(1 - 2~) + 6[n2(2 + ( 2) - 16](1 - ( 2)-1I2e}/n(2 + ( 2)(1 - ( 2) 

.. (2.7) 

Ft = S{6nc (1 - ( 2)112(1 - 2~) + 24ce}/(2 + ( 2)(1 - ( 2) 

Where, for a given value of the Sommerfeld number, S, the position 

cs,~.) of the static equilibrium is given by the solution of 

2 2 r 2 2 2) 112 
S ;: S(cs) = (2 + c s ) (1 - c. )/6c. in (1 - C s ) + 4c. t 

2 112; tan~s = n( 1 - c s ) 2c. 

(2.8) 

(2.9) 

(2.10) 

(2) Short bearing approximation: in this case, setting p = 0 at z = 0, 

L, we find that pressure is subambient in a range 'It + 61 < 6 < 2n + 610 

where 

tan 91 = 2e/d 1 - 2~) (2.11) 

Again, expressions for Fr and Ft are readily found, though they are more 

complicated than (2.7), (2.8), and we find, for static equilibrium 

[L)2 2 2/ {2 2 R S = 4(1 - c s ) c. n (1 - C s ) + 16 2}1I2 2 1/2 c. ,tan~. = nO + c.) /4c. 

.. (2. 12) 
3 Linear Stability Analysis 

A linear stability analysis of the equations (2.1, a,b), with the appropriate 

expressions for Fr,Ft reveals that the full film configuration is always 

unstable (as suspected from early numerical experiments [2]). The 'It-film 

model, on the other hand, is linearly stable for certain ranges of values of 

the imposed conditions (for both long and short bearings). Physically, these 

conditions are the values of wand of W, but it is convenient to plot 

results in the (cs,w) plane. For a given configuration, we assume that the 

geometry and lubricant properties are constant; we can then introduce a 

system parameter, ~, which is independent of w and depends only on W, 

by writing (~= Sfo = LR3IL/(WMc)1I2 c 2) (3.1) 

Then for fixed load W, ~ is constant, and we can plot curves of constant ~ 

on the (cs, w) plane. Examples of these "operating curves" are shown on 

Figs 2 and 3, for, respectively, the linear stability results for long and 

short bearings. A constant load system traverses an operating curve as w 
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is changed, and we are particularly concerned with nonlinear behaviour as the 

system crosses the linear stability curve. 
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Fig. 2 Linear stability borderline for the long bearing approximation, 

together with three operating curves (~ = 2.0, 0.2, 0.035). 
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Fig. 3. Linear stability borderline for the short bearing approximation, 

with two operating curves (~ = 10.0, 0.06). 

4 Nonlinear Analysis 

Equations (2.1, a,b) are already highly nonlinear even when expressions 

(2.7), (2.8) are used for the fluid forces. In essence, the nonlinear 

problem takes the form 
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X2 = Wsin~ + f2 (x,A) + g2 } 

X = (x I) 
(4.1) 

where, for manipulative convenience we have used Cartesian coordinates 

(X3,X4) introduced functions fl to represent the fluid forces acting on the 

rotor, and gl to represent external forcing. ~ is a vector of parameters 

having three important components, a Reynolds number, a radius ratio and an 

eccentricity parameter, and W constitutes a fourth parameter. It is clear 

that, in a mathematical sense, (4.1) is a fourth order nonlinear system with 

four independent parameters; its dynamic behaviour is potentially very rich 

even when the normal physical constraint of constant radius ratio is invoked 

to reduce the number of parameters to three. In this paper we have of course 

also assumed W to the constant, thus neglecting any feedback from the rest 

of the mechanical system, and effectivly reducing the number of independent 

parameters to two. 

The full nonlinear problem is not, in general, responsive to analytical 

methods, and resort to numerics is necessary for detailed quantitative 

results. Much insight into the dynamics of the system, and of the crucial 

importance of certain physical effects, may however be gleaned from the 

analysis of the weakly nonlinear behaviour near the stability curve of linear 

theory. Additionally, information on large amplitude ocillations of the 

rotor may be obtained by various forms of "averaging". 

Of several perturbation methods employed by ourselves and other authors, the 

most fruitful is a multiple time scale analysis of the behaviour of small 

displacements (x', y') away from the equilibrium position (x.,y.) 

obtained by linear theory. For a wide range of conditions, loss of stability 

occurs when a pair of complex conjugate eigenvalues crosses the imaginary 

axis at a finite speed, and the conditions for Hopf bifurcation are met. 

A standard multiple time scales analysis [3] then leads to the solutions 

in s Al(~)e 0 + c.c 

~A.c~)einos + c.c } (4.2) 

where s,~ are fast ruld slow times, and c.c denotes a complex conjugate. 

The resulting amplitude equation, writing A(~) = R(~)eiO(~), takes the form 

and the phase equation is 

where ~ .. ~3, /3 .. /33 are real. 

de 
d~ 

(4.3 ) 

(4.4) 
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The signs of al and a3 as w is perturbed above or below its value w. 

at static equilibrium indicate the occurrence of supercritical (al > 0, a3 < 

0) or subcritical (al < 0, a3 > 0) Hopf bifurcation. 

Results of the long bearing case are indicated on Fig. 2. Thus, in region 

1(0 < Cs < 0.14), and in region III (0.75 s c. < 0.795) we have "3> 0 

and therefore an ustable limit cycle exists for w < w.. No periodic orbits 

exist for w> w •. In region II (0.15 < c. < 0.75) we have "3 < 0, which 

implies that a stable periodic orbit bifurcates from (c.,w.) for w > w.; 

for W < w. all solutions approach the equilibrium state. 

Thus, if we vary w at a fixed parameter value ~, eg ~ = 0.035 or ~ 2, 

we encounter a subcl'itical Hopf bifurcation at the intersection with the 

stability curve. At value ~ = 0.2, on the other hand, we encounter a 

supercritical Hopf bifurcation. 

For the short bearing, the overall picture is similar (Fig. 3), except that, 

in this case, "3 changes sign once only. Thus we have regions I and II in 

which bifurcation is subcritical and supercritical respectively, but there is 

no region of subcritical behaviour for large c. corresponding to region III 

in the long bearing case. 

5 Discussion and Summary 

The analytical predictions of the proceeding sections are borne out by full 

numerical solutions to the equations (2.1) supplemented by path following 

methods [5]. Typical bifurcation diagrams are shown in Fig. 4. Detailed 

numerical computations using a range of initial states confirm this general 

picture [2-4], and the existence of large amplitude periodic orbits has also 

been detected by the use of various averaging techniques, at some saving in 

effort over the direct computational approach. 

1.0 lAmp 

, 0.75 n.75 

0.5 n,5 • 

0.25 0.25-

-', 

__ --~----~----~----~----~--~, v r----~--~----~---r----__ --~--_,_ lJ 
0.25 0.25 0.5 0.75 1.0 1.25 

n.1 0.3 0.4 0.5 0.' 0.7 

Fig. 4 Bifurcation diagrams for (a) ~ = 2.0 , (b) ~ 0.2 in long bearing 

approximation; v = w - We' Stable solutions shown by solid lines, unstable 

solutions by dashed lines. 
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A second source of nonlinearity is fluid inertia in the lubricant. The 

inclusion of such effects in the equations of motion for the fluid 

introduces a region of stability at low rotation speeds which is totally 

absent when the fluid motion is modelled by the Reynolds equation (2.4). 

Again the response near to the linear stability boundary is one of 

supercritical or subcritical Hopf bifurcation according to the value E s . 

In summary we have described a basic model for studying the dynamics of a 

journal bearing. The existence of stable small amplitude limit cycles 

(whirl) orbits has been demonstrated for conditions near to those of 

neutural stability on linear theory, and path following methods have enabled 

us to construct bifurcation diagrams illustrating the existence of these 

orbits at amplitudes no longer small. In ongoing work we are exploring the 

use of multiple scales analysis in conjunction with a form of harmonic 

balance to identify and describe large amplitude orbits not necessarily 

connected with bifurcations from the linear stability curves. 

Large areas of the field remain unexplored. Of particular importance is the 

proper description of cavitation. The effects on linear theory using 

different models has been well described; little comparative work with 

nonlinear models has yet been undertaken. Again the question of basins of 

attraction for the various stable solutions has not been addressed 

systematically, and finally may we end with a plea to experimentalists to 

enter this almost totally unexplored field. Without real experimental 

results, scientific assessment of the models we have developed is difficult 

and incomplete, relying as it does solely on comparison with numerical 

experiments. 
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The authors of [1] discussed the subharmonic resonance 
bifurcation of Nonlinear Mathieu equation and they obtained 
six bifurcation diagrams in (a, Il)-plane. In this paper, 
we extended the results of [I] and pointed out that there 
exist as total as fourteen bifurcation diagrams which are 
not topological equivalence each other. Experimental results 
of mechanical model coins ide with the results of paper 
[1 ]. 

It is useful in theory and practice to study the nonlinear 

Mathieu equation 

u"+ ~[ul+h(u,U', V, ~}]+(l+V)u+f(u,ul, V) 

+(2 Ecos2t )[u+g(u,u', V, El]=O (0.1) 

Applying Liapunov-Schmidt reduction in (1), we can obtain 

the bifurcation equation, where 

is as a bifurcation parameter, 

the tuning parameter V 

(0.2) 

where A=ra j r 2j , B=rb j r2j , c=I:c j r 2 j and D=rd j r 2j • The meanings 

and calculations of these symbols are referred to (1). 

When a1 ~O and fll>;O, we have a nonsingular and almost ident i ty 

transformation to transform (0.2) to 

(0.3) 

where 0'=~~_E2, e=2[b1 (O)~2_-c1(O)E2): unfolding parameters. 

There are six bifurcation diagrams with different topological 

structures in the plane of (0', Il) EO(R 2). 
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However, only when a and I:l are both not zero, Eq.(0.3) 

is correct to be studied if we want to know some propert ies 

of subharmonic resonance. In equation (0.3), parameters 

a and I:l have double meanings, firstly they are as modal 

parameters and secondly, as universal unfolding parameters. 

But in practice, if ( a ,f:l) are very sma 11 , (0.3) cannot 

be used to study the bifurcation properties of (0.1 ) in 

a proper sense. Therefore, it is a new problem that what 

the bifurcation behaviors of (0.1 ) wi 11 be when (a,n are 

both zero or nearly zero. In this paper, we find out a 

new bifurcation equation different from (0.3) and obtain 

an extended result 

fourteen bifurcation 

t ha t if a I !>; 0, 

diagrams wi th 

there exist 

different 

as many as 

topological 

strueture • 

.Lf~!>H~_!>L9~!!!l 
When a=I:l=O, (0.3) becomes 

(1.1) 

The codimension of (1.1) is not zero and it cannot reflect 

the mechanics behaviors of (0.1) exactly. At first we calcul

ate the codimension of germ (1.1). 

Conclusion 1.1 Germ (VTalr2)2 has infinite codimension. 

Theorem 1.2 If an ideal Ic:En, where n~2, is generated by 

only one germ p such that p(O)=O, then I has infinite codimen

sion. 

The proof of this theorem is referred to (2). 

Let u=r 2 and g=(V Tal u)2 r, then the restrict tangent space 

of g is 

RT(g,Z2)=<g, ugu>{r}=«VTalu)2, 2a l u(VTal u»{r} 

c~VTalu>{r}=p{r} 

We have p( 0 )=0 and the conclusion 1.1 is true from Theorem 

1. 2. 

Conclusion 1.3 Germ (VTA)2 has infinite conimension, where 
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L 2 • 
A= a j r J. 

Hence we have to add infinite unfolding parameters to germ 

(jJ+a i r2)2 to obtain a bifurcation equation with codimension 

zero if a=B=O. We may see that it is impossible and unnecess.

ary if we do so. We must search a new germ with finite 

codimension. 

Rewrite (0.2) as the form of 

R= ( jJ +a 1 r 2 +a 2 r 4 + ., . ) 2 + IS 2 ( 1 + b i r 2 + ... ) 2 

-(21 (1+c i r 2 + ... )2+1S 2 (d i r2+d 2r4+ ... )2)=0 (1. 2 ) 

Since parameters 

IS and (, we may 

a j , b j , c j 

expand them 

d j are 

in Taylor 

all functions of 

series of jJ, IS 

jJ , 

and 

( . 
Now-equaion (1.2) can be rewritten as 

R= I jJ + a 1 (0) u ] 2 + 2 I a 2 ( 0 ) + a 1 ( 0 ) a 1 jJ ( 0 ) + b 2 jJ ( 0 ) C 2 

-c 2jJ (0)(2 ]jJu2+2Iai (0)a 2 (0)+b i (0)b 2 (0)C2 -c i (0)c 2 (0)(2 

( 1. 3 ) -di(0)d2(0)o2(2]uS+2aijJ(0)ujJ2+ =0 

Wr i tea 1 (0) = a 1 for convienience and a, b, c represent the 

coefficients of jJu 2 , us, UjJ2. 

We take it as the new germ: 

Theorem 1.4 Suppose there is a normal form 

where ¢=sgn(gvvv 

)E.E jJ (Z2) is u, 
if at (u,jJ)=(O,O) 

), o=sgn(gujJ)' (=sgn(guu'· 

Z2 -strongly equivalent to h* 

(1.4) 

Then g*=rg(u,jJ 

if and only 

( 1. 5 , 

We have the formula of gvvv in terms of darivatives of 
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g to u, )J: 

Cora llary 1.5 Suppose there is a germ g*=rg (u, )J ), where 

g is given by (1.4). Then g* is Z2-strongly equivalent 

to h*, where 

Proof. It is clear that, at (u, jJ )=(0,0) we have 

=0 and g =2a 2 , g =2a 1 , g =2, eventually det(d 2g)=0 
uu 1 ujJ jJjJ 

( 1. 6 ) 

g=g =g 
u )J 

Take (v 1 ,v 2 )=(I,-a 1 ) as eigenvector of zero eigenvalue 

of det(d 2g)=0, then g =6(b-aal+a2c)~0 
vvv 1 

The conditions of Theorem 1.4 are all satisfied. 

Since (1.4) is Z2 -strongly equivalent to h of (1.6), their 

bifurcation diagrams are topological eqvivalent. That is, 

the bifurcation behaviors of 

( 1. 7 ) 

are the same as that of (1.4). We only discuss the properties 

of (1. 7) be 1 ow. 

~_~El~~!~21_~ElE1~lEE~_2E2_T!2E~1~lEE_Y2!1~~~ 

At first we state a theorem which tells us that the codimen

sion of (1.7) is three. 

Theorem 2.1 The unfolding terms of germ g'=(jJ + deu)2 + ¢u 3 

are {I, u, ujJ} and the codimension is three. 

Proof: We will prove it in terms of statements of [2]. 

Take de=+1 for simplicity and we have 

RT ( g' ,Z 2 ) = < g', u g '> { r } 
u 

=(M4+R{u 2+4ujJ+3jJ2, 3¢u 3+2u 2+2ujJ,· 

U2 jJ+UjJ2, UjJ2+jJ3, u 3 +u 2 jJ}){r} 
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=(M~+R{u 2+4uJ.!+3J.!2, 34m 3+ ZU 2+ ZU J.!, u2 J.! +UJ.!2 , 

uJ.!2+J.!3, U3 +U 2J.!, U+J.!, J.!2+u J.!}){r} 
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To find out the unfolding terms is to search a basis {PI 

,Pk}, such that, 

.I. 
{ I t r [T ( g " Z 2 ) l} = ( V g , + R {p 1" •• , Pk }) {r } 

where k is the codimension. Now we have 

Vg '=R{U 2 +4UJ.!+3J.!3, 3¢u 3 +Zu 2 +ZuJ.!, U2J.!+J.! 2 U, uJ.!2+J.!3, 

U3 +U 2 J.!, u+J.!, J.!2+ UJ.!} 

(Z • 1 ) 

It is easy to see that if we choose P 1 =1, P2=U and p 3 =uJ.! 

, Eq.(Z.l) holds. 

The universal unfolding of (1.7) is 

( Z • Z ) 

Now let us calculate the transition variety nZ2) of (Z.Z). 

Geometrically, L(Z 2 is a hypersurface which divides the 

space of unfolding parameters into several regions. Every 

two bifurcation diagrams are topological equivalence within 

anyone region and are not equivalence in any two different 

regions. The bifurcation diagrams are not structural stable 

on r(z2)' 

r( Z 2 )=B 1 (Z 2 )uB 0 (Z 2 JuH 1 (Z 2 )uH 0 (Z 2 JuD( Z 2) (2.3) 

The sets of (2.2) are the following. 

B 0 ( Z 2 J: (1= 0; B 1 ( Z 2 ) : 

( 2 • 4 ) 

~ 0 (Z ): 1 6 ( 1 + ,,) 2 (1+ !3 2= 0 ; 

where ~ represents zero set. 
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1_~11E!E211EE_Q12B!~~E_~E£_lh~1!_E!EE~!11~E 

We may draw the hypersurface (2.4 1 in 3-dimensional space 

(a, S, v l. We take V as au"i llary parameters and draw these 

figures in (a, S ,--plane. See Fig.3-l, where (al is the 

transition variety for <1'=1 and (bl for <1'=-1. Fig.3-2 is 

the related bifurcation diagrams where ae=-1. 

The analysis of mechanics behaviors of bifurcation diagrams: 

1 l. Compared with [1 ], this paper has an e"tended 

result, that is, the subharmonic resonance bifurcation 

has fourteen types. The conclusion of [1) is a part of 

this paper. The numbers in brackets of Fig.3-2 are types 

of bifurcation diagrams in [1 ). 

2 l. The parameter 

the response amplitude 

$=-1 and limeted for $=+ 1. 

$ 

r 

plays such 

is limited. 

a role that whether 

r is unlimited for 

+= ./ 4>= -/ (a} ..L2.... , ..£2.. 
.z 

o 

.D. 

when 

~, 
'- 4- ~ 3 

3 '.~ ~~O ~F"':::: 4 B .. ,1<0 
~/ , • .......... 5 ~/" s .......... 

'" " ....... 

" I / -!. 
Ii. If. 

(OJ (b} 

Fig.3-l 

$=sgn(g 

( b) 

131 

-t:::..-
5 

c.il 

---C.:::: 
I 

1+) 

~ 
S 

.d 
6 

.W:: 
.z 

lSI 

..~ , 
Fig.3-2 

3 

o 
...:::::..... 

T 

<-
.3 

I') 

~ 
7 

vvv 
=sgn{ [b l (0)b 2 (O)-al (0)b 2 }J (0))0 2 -[e I (0)c 2 (0) 

4-
(II 

~ 
4-

-a 1(0 )a 2V (0) 1E: 2 -d l (0 )d 2 (0 )0 2 £2} (3.1) 

$ is mainly determined by first two terms of (3.1) 

£ and c are small parameters. Parameters a l (0), b l 

(0) and c I (OJ have been given in [1] and the remainder 

parameters may be calculated by a similar proach. We should 
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by nonlinear damping hand 

The mechanics backgrownd 

greater damping and the 
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and b llJ (OJ are determind mainly 

CI(O), cl(O) and c 2lJ eo) by g. 

of ~=+I is that the system has 

damping restricts the increase 

of response amplitude. When ~=-I and the damping is smaller 

than parametric excitation. The response amplitude can 

increase infinitely. However, in fact, the nonlinear factors 

always change while the response amplitude increases and 

this change makes the amplitude limited. 

3). Algebrially, there maybe exist three limit cycles 

when we discuss the solutions of e2.2J. However we can 

prove that there are at most two limit cycles in fact. 

4J. In practice, the choise of germ can be considered 

as truncated terms (0.2). The truncated terms of this paper 

are much than that of [1]. It is first approximation in 

[I] and partically second approximation in this paper. 

Clearly they are different not only in quantity but also 

in quality. 

j_~~P~!J~~~J21_!~!~2!EE 
Expermental equipment is a beam fixed supported at one 

end and simply supported at another end, whtch bears longitu~

inal excited force as shown in experimental frame Fig.4-1. 

The pizoelectric accelerometer is mounted on the center 

of the beam and measures transvere vibration of the beam. 

The excited frequency of the system is swept under the 

full control of the sweep generator. The amplitude of excited 

force is controlled by changing the excited current. Nonlinear 

damping of the system is produced by dry friction device, 

which is mounted in the simply supported end. When the 

beam is excited by the harmonic force, the nonlinear damping 

of system can be changed by adjust ing the pressure to bear 

on the beam. Experimental results of mechanical model coinside 

with the results of paper [I], which are shown in the numbers 

in brackets of Fig.3.-2. Two of the experimental results 

are shown in Fig.4-2 and Fig.4-3. 
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Fig.4-1 experimental frame 
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Fig.4-2 The bifurcation dia
gram corresponding to (3) of 
Fig.3-1 ~:O.061F , E=O.2IP 
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Fig.4-3 The bifurcation dia
gra, corresponding to (5) of 
Fig.3-2 ~=O.061F , E=O.182P 
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Evolution of Rigid Body Motions 
due to Dissipative Torques 

EL. Chernousko 
Institute for Problems in Mechanics 
USSR Academy of Sciences 
Moscow, USSR 

Summary 

Angular motions of a rigid body subjected to perturbation torques of different nature are 
considered by means of methods of small parameter: averaging and singular 
perturbations techniques. Evolution of perturbed Euler-Poinsot and Lagrange motions 
under the influence of small dissipative torques (both external and internal) is studied. 

Introduction 

We consider dynamics of a rigid body with arbitrary moments of inertia subjected to 

some external and/or internal torques which include small dissipative torques. It is 

well-known that equations of rigid body dynamics can be integrated in a closed form 

only in some special cases. Two of these cases - Euler-Poinsot and Lagrange motions 

- are taken as unperturbed (nominal) motions. 

Different types of perturbation torques are considered: external resistence, torques due 

to internal degrees of freedom and internal friction, internal torques due to viscous fluid 

placed in the cavity inside the body etc. 

In the case of external torques the method of averaging [1] is applied. The averaging 

procedure with respect to Euler-Poinsot and Lagrange motions is developed. In the 

case of internal perturbations the motion of the body is governed by a singularly 

perturbed system of differential equations. Here we apply singular perturbations 

technique [2] combined with averaging. 

Nonlinear transient processes are studied which depend on the type of dissipative 

torques. The cases of external and internal dissipation differ drastically. For the first case 

the angular momentum tends to zero while in the second case it remains constant. 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer·Verlag Berlin Heidelberg 1990 
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The paper sums up briefly some results of research initiated by problems of satellite 

dynamics and carried out in the Institute for Problems in Mechanics, USSR Academy 

of Sciences, see [3 - 15]. 

Co-ordinate systems and equations of motion 

Consider motion of a rigid body R about some fixed point (or its centre of mass) O. 

Introduce three Cartesian co-ordinate systems: inertial frame Ox; 

(i = 1,2,3, OX3 is vertical); frame Oz; associated with the principal axes of inertia 

of the body; and frame Oy; whose axis OY3 lies along the vector G of the angular 

momentum of the body while axis OY2 lies in a horizontal plane. Equations of motion 

of the body can be presented in the form [3] 

• L1 
0=G' 

• L2 
A=-

Gsino 

· .. 1 1 L2coS1jJ-L1sin'/ 
(J = G sm (J sm q.> cos q.> (A - - B- ) + -.::._-'-_--O..-_'r~ 

G 

• 1 l' 2 1 2 L1 COS 1jJ + L2 sin 1jJ 
q.> = G cosO (C- -A- sm q.>-B- cos q.» + . 

G smO 

· _ G (A-1 . 2 B-1 2.\ L1 cos 1jJ + L2 sin 1/) L2 1jJ - ~ sm q.> - cos q.>J - --"---'----"'-----'- - ---
G tanO Gtano 

(1 ) 

Here L; are components of the torque r with respect to the axes Oy; ; angles A and 

o define the orientation of the vector G in the inertial space (0 is the angle between 

G and OX3 while A is the angle between OX1 and the projection of G on the plane 

Ox 1X2 ); G = I G I; 0, q.>, 1jJ are Euler angles (nutation, rotation and precession 

respectively); and A, B, C are principal moments of inertia with respect to the axes Oz; . 

The kinetic energy of the body is 

(2) 
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Its time derivative is given by 

t = 2T L3 
G 

+ G sinO cosO (A-1 sin2 qJ + B-1 cos2qJ - C-1) (L2 cos1jJ - L1 sin1jJ) 
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+ sinqJ cosqJ (A-1_B-1) (L1 cos1jJ + L2 sin1jJ) (3) 

In the absence of perturbations (L i = 0, i = 1,2,3) equations (1) describe Euler

Poinsot motion: G, a,A, T are constant. 

Method of averaging 

Let perturbations be comparatively small (in other words, rotation of the body is 

sufficiently rapid), i.e. ILili1-e «: 1 where e is a dimensionless small parameter. 

Then the torques can be presented as L i = e L ~ where L ~ -1 are given functions of 

G, a, A, 0, qJ, 1jJ . The motion of the body is perturbed Euler-Poinsot motion with "slow" 

variables G, a,A, T and "fast" variables 0, qJ, 1jJ , see (1), (3). It is convenient to replace 

one of the fast variables (say, 0) by a slow variable Tusing (2). Following the method 

of averaging [1] we average equations (1), (3) with respectto fast Euler-Poinsot motion. 

This procedure was developed in [3] where angular motions of a satellite subjected to 

gravity torques were studied. As a result we derive a system of four equations for slow 

variables G, a, A, T . Intergrating it we obtain slow variables with an accuracy of O( e) for 

time interval of 0(e-1) . Note that in Euler-Poinsot motion with A > B > C trajectories 

of the end of the vector G are closed curves which encircle either the axis Oz 1 or Oz 3 . 

For motions around Oz 1 we introduce a new variable (instead of G or T) 

k2 = (B - C)(2TA - G2) 

(A - B)(G2 - 2TC) , 
(4) 

which is a modulus of elliptic functions arising in Euler-Poinsot case. For motions around 

OZ3 we replace A by C and C by A in (4). 

Euler-Poinsot motion perturbed by external dissipative and gravity torques 

Let the torque consist of gravity and linear resistance terms 

L=maxg-!w (5) 
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where m is the mass of the body R ; if is a vector of its centre of mass with respect to 

the fixed point 0 ; g is the gravity accelaration acting against OX3 ; and I is a symmetric 

non-negative definite tensor with constant components Iij with respect to the axes Oz j • 

The averaged equations for the case (5) are 

i = mg al [A(G2_2TC)]1/2 J = 0 
2G2 K(k) A-C ' 

d~ [ ] E(k) - = (1 - 1C)(1-~) - (1-IC) + (1 + IC)~ -
d~ K(k) 

IC = ( 2/n _ III _ 133 ) N ~ = ~ N = AC 
B A C' N' 1)3 A-Ill C 

(6) 

(7) 

Equations (6), (7) correspond to the case (4). Here K(k),E(k) are complete elliptic 

integrals of the first and second kind, a 1 is a projection of the vector if on the axis Oz 1 , 

~ is dimensionless time. The constant t * can be chosen in such a way that k2 = 1 

at ~ = 0, t = t * . 

Equations (6), (7) as well as averaged equations for G and T were obtained and 

analyzed in [4] .It was proved that G and T decrease monotonically, and the estimates 

hold 

Go exp(-b2 t) s G s Go exp(-bl t) 

where Go, bi. b2 are positive constants. Similar estimates are true for T . 

Equation (7) describing evolution of the motion with respect to the vector G was first 

obtained in [5] for a rigid body containing viscous fluid with high viscisity (small Reynolds 

number). Analysis and integration of (7) was performed in [4,5]. 

We shall sum up some conclusions from [4]. 

In the first approximation, perturbed motion of the body is made up of rapid Euler

Poinsot rotation about the vector G and slow evolution of the parameters of this motion. 

The magnitudes of the angular momentum G and kinetic energy T strictly 

(exponentially) decrease; their change depends only on the resistance of the medium. 

The motion of vector G in inertial space is described by equations (6) and involves a 
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constant deviation from the vertical: d = const . The rotational velocity of G about the 

vertical i is variable. Evolution ofthe parameters of Euler-Poinsot motion described by 

equation (7) has the following properties. 

If I/C I :s; 3 then all motions tend to rotation about the axis Oz 1 (for N > 0) or 

Oz 3 (for N < 0). If I/C I > 3 then there exists some quasi-stationary motion with 

k = k * defined by the equation 

12- - 1 + (1 + 12-) E(k)jK(k) 
/C = ~(~l_-12-"')-7-[E~(k~)j:--<-K(=k).>...o_"""'l~] -'-

If /C N < 0 then this motion is stable and all motions tend to it. If /C N > 0 then it is 

unstable and every motion tends to rotation about OZl or OZ3. 

Other problems 

Evolution of rigid body motions subjected to internal elastic and dissipative torques was 

considered in [6,7]. Some results on singular perturbations method [2] obtained in [8] 

are useful here. Concrete examples of rigid body motions when the body carries elastic 

and dissipative elements are given in [9,10]. 

The obtained results are extended in [11] to rigid bodies with non-rigid parts made up 

of continuous viscoelastic medium (Kelvin-Voight material). These results are 

compared with the case of a body having a cavity containing viscous fluid with small 

Reynolds number, see [5,12]. 

Perturbed Lagrange motions are studied in [13]. Perturbed motions of a rigid body that 

are close to regular precession are considered in [14]. 

Conclusion 

Results summed up in this paper make it possible to analyze angular motions of artificial 

satellites and celestial bodies under the influende of small perturbation torques. 

Asymptotic approach permits to obtain some qualitative results and to describe 

evolution of rapid motion using simplified averaged equations. Thus it is possible to 

avoid numerical integration with small step needed in a direct approach. Results 

obtained in [3 - 15] made it possible to estimate influence of non-rigidity and dissipation 
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on satellite angular motions, to evaluate dynamic effects caused by the presence of 

flexible elements and liquid in tanks, to choose parameters of dampers etc. Note that 

we did not mention resonant phenomena that arise in averaging procedure when there 

are two or more slow variables. These phenomena need separate consideration. 
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Summary 
The results of an experimental and theoretical investigation of the dynamics of a thin 
elastic rod are presented. Regular, planar motions of the rod are observed to become 
unstable in wedge-shaped regions of the forcing frequency- forcing amplitude parameter 
plane. Inside of these wedges, motions are nonplanar and generally chaotic. Fractal di
mension calculations from experimental data indicate that the dynamics of the rod may be 
modelled by between two and six degrees of freedom. A family of asymmetric bending
torsion nonlinear modes are discovered experimentally, and their frequency-amplitude 
characteristic is obtained. A two degree-of-freedom system is derived by starting with a 
geometrically exact linearly elastic rod theory and projecting onto the first bending and 
torsional modes. Numerical simulations indicate that this two-mode model exhibits much 
of the behavior observed experimentally. 

Introduction 

In this paper, the results of an experimental and theoretical study of the dynamics of 

a thin, cantilevered elastic rod are presented. A more detailed discussion, along with a 

complete bibliography, can be found in Cusumano [1], as well as in a forthcoming paper 

by the authors. 

The study of elastic rods is an old one. In fact, we will often refer to the elastic rod 

under consideration as "the elastica" in reference to the name given the static problem by 

Euler. While the study of the dynamics of the elastica has a long history, the majority of 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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work done has dealt with small, linear vibrations. Space does not permit a complete re

view of the literature here, but a bibliography of works involving the nonlinear vibrations 

of beams can be found in the survey paper by Sathyamoorthy [2]. Of particular relevance 

to this study is the work of Crespo da Silva and Glynn [3,4], who used perturbation meth

ods to show that planar motions of a fixed-free beam can lose stability. However, they 

neglected torsional inertia and assumed nearly equal bending rigidities, which is not the 

case here. 

Experimental Observations 

The elastica was clamped at the support end and oriented so that its undeformed neutral 

axis was vertical (see Fig. 1). The specimen studied was made of carbon steel, with over

all dimensions of 28.8cm x 1.27cm x .21mm. The support of the rod was harmonically 

displaced by means of an electro-mechanical shaker. The axis of displacement was aligned 

with the lateral axis of symmetry of the rod so that one would expect motions to remain 

in the x-y plane. Indeed, stable motions are observed in which the response of the rod is 

planar and regular (i.e. either periodic or quasiperiodic). However experiments showed 

that the planar motions become unstable in certain regions of the forcing frequency, forc

ing amplitude plane. The stability diagram of Fig. 2 shows a series of wedge-shaped 

regimes, each with its apex at a resonance of the system. In the diagram, the Ii, with 

i = 2,3,4,5, are the second through the 5th in-plane bending natural frequencies, and 

IT is the first torsional natural frequency. Resonances occur at all in-plane natural fre

quencies. Combination resonances are present at frequencies equal to 12 + la and IT - It. 
Another resonance at r ~ 92Hz is not readily identifiable as a combination resonance. 

Inside of the regions of planar instability, motions were, in general, chaotic (the response 

was characterized by a broad-band, continuous power spectrum). Chaotic, nonplanar 

motions of the thin elastica exhibit dynamic two-well behavior: during excursions out of 

the x-y plane, the rod stays trapped away from the x-z plane. It should not be inferred 

that chaotic responses exist at all points inside of the nonplanar regions: in one instance, 

an asymmetric, period-two response was discovered. 

A previously unobserved family of asymmetric bending-torsion nonlinear modes (periodic 

motions in the conservative system which do not pass through the equilibrium configura-
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Figure 1: Geometry of the elastica system. 
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Figure 2: Stability boundaries for the elastica obtained by holding the forcing frequency 

fixed and increasing the forcing amplitude until planar motions lost stability. 
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tion of the rod) were found. These solutions pass back and forth through the x-y plane 

while the rod stays bent away from the x-z plane. The weak damping in the system 

allowed the frequency-amplitude characteristic for the nonlinear modes to be obtained by 

estimating the instantaneous frequency of a transient torsional strain signal and plotting 

the result against the estimated instantaneous torsional strain amplitude (see Fig. 3). 

The result shows that the frequency of vibration of the nonlinear modes is a decreasing· 

function of their amplitudes. Spectral analysis results taken just after the loss of planar 

stability near all resonap.ces are qualitatively similar in shape, and an "energy cascading" 

phenomenon is apparent: most of the power in chaotic tip displacement signals (obtained 

using an optical edge tracking system) lies well below the driving frequencies, lying in

stead in low frequency first bending and nonlinear bending-torsion modes. 

Fractal Dimension Calculations 

The fractal dimensions of attracting sets in different resonant wedges were estimated 

directly from experimentally-obtained time series using a numerical code based on the 

correlation dimension method of Grassberger and Proccacia [5]. A key element of the 

algorithm is the reconstruction of the actual phase-space trajectories from scalar data 

by means of the delay-embedding procedure. An introduction to fractal dimensions, and 

to other ideas from dynamical systems theory, along with an extensive bibliography, can 

be found in [6]. The fractal dimension for a given attractor is estimated by plotting the 

correlation dimension de versus the embedding dimension m used in the delay-embedding 

procedure (m can be thought of as a guess at the phase space dimension needed to model 

the observed dynamics). For a deterministic signal, de will level out at some critical value 

of m. For random noise, de will continue to grow: in the limit of an infinite number of 

data points de(m) = m for random noise. The resulting dimension estimates for the thin 

elastica, with one exception, were below 5, which implies from dimension theory that it 

should be possible to model the dynamics of the rod with between two and six degrees of 

freedom (see Fig. 4). 

Derivation and Analysis of a Two-mode Model 

By starting with the classical three-dimensional rod theory due to Love [7] a geometrically 

exact theory for the experimental system can be developed. Physical scaling arguments 
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show that an additional curvature constraint is needed: the curvature component cor

responding to bending in the stiff cross-sectional direction is zero. If in addition it is 

assumed that the torsion of the rod varies slowly along its length, it can be shown that 

a Lagrangian density in a generalized bending variable U and a generalized torsional 

variable ¢> is given to second order in U by: 

1 . . . . . 1· 1 2'2 1 I 2 1 ,,2 
f=2d2+dUcos¢>-dUsin¢>¢>+-Zy2-t2(Ji+U)¢> -l+v(¢» +2(U) (1) 

where d == D cos nt, () = ft, and 0' = ;x' Then, application of Hamilton's principle leads 

to the set of partial differential equations: 

and 

u + U"" - U J? = Dn2 cos(nt) cos ¢> 

.. 2 .. 
(Ji + U2)¢> - --¢>" + 2UU ¢> = Dn2U cos(nt) sin ¢>, 

l+v 

(2) 

(3) 

with boundary conditions U(O, t) = U'(O, t) = u"(T, t) = U"'(l, t) = ° and ¢>(O, t) = 

¢>'(/, t) = ° (in the preceding, I is the dimensionless rod length). We remark that the 

unforced, linearized versions of equations (2) and (3) correspond to the Bernoulli-Euler 

beam equation, and the equation for torsional waves on a rod, respectively. Nonlinear 

coupling in the system comes from coriolis and centripetal acceleration terms, as well as 

a nonlinear inertia term in equation (3). Observe also that the condition ¢> = 0, which 

corresponds to planar motions, defines an invariant manifold for the nonlinear system. 

By means of the assumed-modes method, the above partial differential equations can 

be used to obtain a two-mode model system using the first bending and the first torsional 

mode of the system. The resulting model system can be put into the following form after 

the addition of linear modal damping terms: 

(4) 

and 

where ql and q2 are, respectively, the bending and torsional modal amplitudes. 
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The dynamics of the two-mode model represented by equations (4) and (5) were studied 

numerically. A family of nonlinear modes analogous to those observed experimentally 

were found, and the computed frequency-amplitude characteristic of the family is qualita

tively similar to that found for the rod (Fig. 5). A wedge of planar instability was found 

for the model inside of which the motions were chaotic and nonplanar (Fig. 6). 

Conclusion 

The behavior of a two-mode model captures much of the observed dynamics of the thin 

elastica studied experimentally. Thus, it appears that the precise mechanism of the pla

nar instability observed in the thin elastica can be elucidated by studying a much simpler 

system. Future work will focus on the nature of modal coupling in the model system 

of partial differential equations (2) and (3), with the goal of understanding the energy 

cascading phenomenon observed in the experiments. 
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~~!!!!!!~!:l 
The work is aiming at establishing a connection between soliton, 
chaos and buckling of elastic structures. We discuss two evolutio
nary, completely integrable nonlinear differential equations with 
three types of localized solutions; loop soliton, cusp soliton and 
envelope soliton. After giving a mechanical interpretation to 
these equations, the first as the dynamical elastica and the se
cond as that governing localized buckling waves in an elastic cy
lindrical shell, we use a blend of numerical, theoretical and ex
perimental reasoning to show the homoclinicity of these solutions. 
This in turn may lead through deterministic spacial fluctuation to 
spacial asymptotic chaos in the sense of Roessler. 

'!'!!!!:££~£!i£!! 
At least in one incident, before E. Lorenz discovery, someone was 

looking for chaos and was disappointed to find inexplicable order 

[1]. Subsequent extension of the work of E. Fermi, et al hinted 

repeatedly at possible connections between the integrable soliton 

and the nonintegrable chaos [2, 3]. 

It is also some time ago when R. Thorn [4] noted that "Time has 

been given a privileged role in the models of generalized catas

trophes, but we can do the same for a space coordinates". This 

sounds today like a programmatic declaration of the "school" of 

statical chaos which was started in mechanics by the work of P. 

Holmes and J. Marsden [5], but may have had its roots earlier in 

unpublished discussions by F. Moon and P. Holmes on the role of 

the statical-dynamical analogies. Independently and a little later 

the connection between generalized bifurcation into turbulence on 

the one side and soliton and localized buckling of shells on the 

other side was conjunctured by the first author [3, 6-8]. Also in

dependently and slightly later L. Virgin was experimenting already 

as postgraduate student with similar ideas and gave subsequently 

an elegant simplified version of the chaotic elastica of Holmes 

and Mielke [9,10]. Early ideas about localization and soliton may 

be found in an excellent book by Moon [11]. Spacial chaos in phase 

w. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 



www.manaraa.com

68 

transition is discussed in a profound paper by G. Iooss [12]. 

In what follows we are investigating two evolutionary, complete

ly integrable differential equations exhibiting three types of so

litary wave solutions. The first which may be interpreted as a 

propagating Euler loop in an infinitely long elastic band was dis

covered by Ichikawa, et al [2] in connection with problems in 

plasma physics. The second is the cusp soliton, found by the same 

authors. The third is the more familiar envelope soliton [13] 

which may be interpreted as the travelling envelope of localized 

deformation waves in a buckled shell. In fact depending on the 

numbers and combinations of slow times and slow spaces involved 

in the analysis, different Schroedinger and Ginzburg-Landau types 

of envelope equations were found (see fig 5). 
Finally it will be shown that by using a time-like coordinate, 

the homoclinicity of both loop and envelope soliton in the spa

cial domain may be established. It follows then that deterministic 

spacial fluctuation may lead to deterministic asymptotic chaos in 

the sense of O. Roessler [7, 14]. 

I~~_£~~~~!£~!_~!~~!!£~_=_!QQ£ ~~£_£~~£_~Q!!!Q~ 

Including the inertia terms in the elastica one finds 

Wtt + (P/PA)W xx + (a/pir)[W (1+W 2 )-3/2 ] = 0 xx x xx ( 1 ) 

where W is the lateral deflection, x is the axial coordinate, P 

is the axial load, a is the bending stiffness, p is the density, 

A is the cross-sectional area of the elastica, ()x= :~) and 

()t= :~) • Nondimensionalizing one finds 

Y + Y + 2e[Y (1+y 2 
tt ~ xx x (2 ) 

We have underlined the second term in eq.(2) to remember for 

later use that it was multiplied with P/PA Introducing the 

stretched coordinates xI =x+t , 

noting that 

t = Et 
I 

()- =() x... xI ..• 

and retaining up to e order only one finds 

".\ \\ "_\2 
(Y +2EY+···)+(Y )+2dY (1+Y (3) 
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Where (')=d()/dxl and )=d()/dt 1 • Note now that the first term 

in the first bracket and the second bracket in eq.(3) would have 

cancelled each other if P/pA in eq.(l) would have been negative. 

This is of course only possible when P is a tensile force. In 

turn this is the case when a loop is formed. Consequently we may 

write for the looped elastica 

.\ " , 2 ) - 3/2 ]\\ __ 0 Y + [Y (l+Y (4 ) 

Noting that ~ = ~ where ~ is the slope of the central line of the 

elastica and using the arch length s as a coordinate one finds 

~+ cos ~(sec H ) = 0 ,( )=d( lids (5) 
S5 $ 5 

Using the inverse scattering method eq. (4) and (5) were shown 

by Ichikawa et al to possess travelling loop soliton and cusp so

liton [2]. Equation (5) is investigated here numerically and also 

experimentally. Some photographs, extracted from a video film 

made by the first author, using a long, very flexible elastic 

rope are shown in fig (1). Another interesting aspect of eq.(5) 

in the stationary case is revealed when perturbing it in a ha

miltonian way analogus to the parametrically excited pendulum 

"" '" . '" . ~- Asin",= aSl.n",sl.ns (6 ) 

Fig 2 and 3 show the Poincar: plot and the spacial plot of this 

equation for the parametric value used in [16] namely, A =0.0272222 

and a=0.15 . The important point here is the spacial plot itself, 

which opens the eyes to new interpretation and countless analo

gies. In fig (3b) some interesting coiled forms as well as chao

tic and periodic loop soliton are shown. 

a 

ip" - 0.0272222sinip- 0.15sinip sins 

ip(0)=6 • ip'(O)=O 

b 

ip" - 0.01 40' - 0.0272222sin ip - 0.15sinIP sins 

40(0)=6 • 40'(0)=0 

fl~_~ Influence of damping perturbation on the imperfect 
elastica. 

(a) The conservative imperfect elastica. 
(b) The nonconservative imperfect elastica. 
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Note further the resemblance of both to secondary polypeptide 

chains [17]. Finally in fig (4a, 4b) the effect of damping per

turbation is studied for eq (6). Some parts of fig 4(b) are re

miniscent of the spirals of the Mandelbrot set. 

~~£~!i~&_££_~~~!!~!i~~_~!£~£!~£~~_~_~~~~!££~_~£!i!£~ 

Consider the following partial differential equation. 

""" 2 3 •• a W + oW + C1W-C 2 W -C 3 W + pW = 0 (7) 
SettingP=cz=O in eq (7) one finds the equation of Amazigo et al 

[15]. In the case of o=c 2 =O one find that used by A. Nayfeh et al 

[16]. Here, we draw attention to another interpretation. Setting 

C3 =O this equation may be regarded as that of the axsymetrical dy

namical buckling of an elastic cylindrical shell with logarithmic 

strain governing the circumferential deformation. Consequently we 

may regard W as the radial displacement, 0 as the axial pressure, 

C1=Eo/r: C2=Eo/r: P is the inertia, r is the radius and 0 is 

the thickness of the cylinder. (')=d()/dx, (-)=d()/dt, and t 

is the time. Now we seek a perturbative reduction of this equation 

using a multiple scales method. The simplest solution is to intro

duce only one slow space using the loading increment e=lif-o as 

a parameter and allow the amplitude of deflection A(x t) to modu

late with the prior knowledge that the slope of the postcritical 

path is zero. Using s=ex where s is a slow space and omitting 

details of the standard calculation one finds 

2 o~ 'A" - n 2 A + Y A I A I 2 = 0 (,If.) = d ( ) / ds 
c (8 ) 

where o~is the well known classical bifurcation pressure, n~ is 

the associated wave number and y is a constant. Our fourth order 

partial differential equation has thus been reduced to an ordinary 

differential equation of the second order. In this drastic reduc

tion the dynamics is lost and the solution is not different from 

that obtained from purely statical consideration for which y= ~. 
Equation (8) may in fact be regarded as a stationary nonlinear 

Schroedinger equation due to obvious reasons. One could restore 

the time evolution of the problem by introducing several time and 

space scales. A deep insight into the nature of the prolem may be 

gained from comparing different categories of periodic and non

periodic solutions of the partial differential equations and the 

ordinary differential equation. Due to space limitations we pro

ceed with the solution of the stationary case only. Scaling from 
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the complex to the real, the modulation equation of A(s) becomes 

2 OC it - n2 A + ( 19/18 r" ) fll = 0 ( 9 ) 
C 

Setting for convenience a=c 1 =c 2 =r=1 , noting that 

"'"l" = dl/ds = (d~ /dA)A ( 10 ) 

and inserting in eq. (7) one finds 

( 11 ) 

.. 2 2 " . • • where k=2 Ao-Ao/2+(19/72)Ao represents the lnltlal conditions of 

integration. Now a bounded localized solution implies that A and 
• * A must vanish for 16"1+00 and since eq (11) discribes for Ao=i\,=O 

a homoclinic separatrix loop, the phase space A -~ suggests that 

Aoo =too =0 may be regarded as initial values when running "time" s 
backwards and k may be set equal to zero. This leads then, after 

some elementary manipulations, to the soliton envelope solution 

A=(6/!i9)sech(19/12)s ( 12 ) 

In fact, the soliton of the Schroedinger nonlinear partial diffe-

rential equation found using inverse scattering linearizing trans

formation (see fig 5) may be easily shown to differ by multiplica

tion with a cosine from the previous solution, that is after ap

propriate scaling and freezing in time. 

In conclusion we would like to demonstrate the predicted sensi

tivity to initial conditions. This is easily shown analytically 

since o~ / ok lends itself as a measure for this sensitivity. 

Thus aA / ak=(1/4!2)(1/IH) shows that when 

H=2(A 2 _A 2 )_(19/18)(A"_A 4 )+ 8A 2 = 0 o 0 0 
( 13 ) 

It 
then sensitivity becomes infinite. Clearly Aoplays a crucial role 

in this condition. In our example it is easily shown that diffe

rent approximation to Am A J - = 12/2/19=1. 376494403 as gi-
S:o 

ven by the maximum precision of an ordinary scientific calculator 
1\ 

and keeping \ =0 , result in a wide variation in the solution. In 

conclusion we may mention an interesting shell buckling problem 

(see fig 6a) where the final spacial buckling configuration is 

completely regular and elastically reversable, however the time 

evolution and order of appearance of these spacial pattern as we 

increase the axial pressure is completely random. Another interes

ting limited buckling problem relevant in oil drilling and may be 

also in theoretical biology (Ribbon Theory of DNA Double Helix) 

is shown in fig 6b. 
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f.!1L2 
The time evolution of 
homoclinic soliton waves 
in the nonlinea~ Sch~oe
dinge~ equation. Depen
ding on the numbe~ and 
combination of slow times 
and slow spaces diffe~ent 
amplitude equations may 
be found. Fo~ one slow 
space ~ and two slow 
times tl • t2. one finds fo~ 
instance in ou~ example 
that 

fllf 4 
A + A+AIAI +iA t = 0 

f.!~_§ 
a) Buckling of an elastic 
cylindrical shell unde~ 
axial p~essu~e. The in
wa~d deflection is limi
ted by anothe~ inte~nal 
cylinde~. The o~de~ of 
appearance of local buck
les is completely ~andom. 

b) Buckling of a long me
tal band inside a long 
tube. As the axial fo~ce 

inc~eases localized ~an
dom waves sta~t appea~ing 
ab~uptly. Fo~ ce~tain 

wir~ fo~ms spontaneous 
helical buckling fo~ms 
appea~ which might be ~e

levant in some p~oblems 
connected to D.N.A. Double 
Helix as well as oil d~il
ling enginee~ing. 

The dynamical elastica can sustain cusp and loop soliton. The 

loops a~e a new phenomenon in dynamics but thei~ stationa~y con

t~apa~ts a~e known since L. Euler. They were invest i gated experi

mentally by M. Born and referred to by R. Feynman in his lectures 

as fascinating forms. We found that the effect pf damping and 

hamiltonian forcing can produce spacial forms of even more fasci

nating complexity. Axsymetrical buckling deformation of shells 

may take the form of envelope soliton and may be pe~turbed by 

shape imperfection into spacial chaos. The conclusions drawn here 
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admittedly from an extremely simplified model, are nevertheless 

of fundamental importance since we must recognize the existence 

of internal stochasticity due to the nonlinear deterministic dy

namics of a structure besides the external stochasticity due to 

random imperfection. 
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Summary 
A plastic source method is developed with structural applications as an alternative to the well-estab
lished incremental stiffness formulation of physically nonlinear problems. A combined model of rate-in
dependent plasticity and damage is considered. Total solution is separated into two responses due to 
external loads and due to the material nonlinearities, which can be considered as defects in the struc
ture. Modal decomposition is applied, where the quasistatic response due to external loads as well as 
defects is used in closed form whenever possible (e.g. for beam-like structures), which gives better 
accuracy compared to a series expansion of the total (quasistatic plus dynamic) solution. Defects act 
as sources of eigenstresses in the structure. Their intensity is determined in a time-stepping manner 
by means of the constitutive law. FFT is applied to responses in bending vibrations for inspection of 
changes in the frequency contents due to nonlinear material behaviour. 

Introduction 

There are two basic sources of nonlinearity in the dynamic behaviour of engineering structures: geo
metric and material nonlinearities. In the latter case it can be distinguished between elastic and inelas
tic behaviour. While for a nonlinear elastic material the equation of motion exists in a closed form for 
the whole time domain, the description of inelastic materials generally demands an incremental formu

lation, since material parameters change gradually according to prescribed evolution equations. 
One of the most interesting phenomena in nonlinear elastic systems is chaotic motion (Moon 

[1]), which often results from bifurcations of the phase trajectory (see e.g. Guckenheimer, Holmes (2)). 
Various techniques can be used to visualize the characteristics of nonlinear (chaotic) vibrations, like 
phase portraits, Poincare maps, Fourier transforms or simply time histories of deflections. Although 
there are cases, where inelastic - plastic, say - deformations create bifurcation-like behaviour 
(Symonds, Yu (3), Poddar,Moon,Mukherjee (4)), even non-bifurcating motions of inelastic systems 
often show results, which in some aspects resemble those of chaotic motions. There exists a variety 
of analytical tools for investigation of bifurcation points and their characteristics in nonlinear elastic 
systems, (2). No such methods can be used when inelastic behaviour occurs, since the state of the 
system is no longer uniquely determined by deflections alone. However, more insight into the structural 
behaviour can be achieved by considering inelastic effects (e.g. plastic deformation, material degra-
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dation, which are considered in the sequel) as defects, which act as an additional loading on the asso
ciated linear elastic structure. Of course, this type of loading depends on the prescribed external ex
citation. Because of linearity modal analysis can be used for solution, that is, the nonlinear response is 
projected into the eigenspace of the associated system. However, modal expansion is performed only 
on the purely dynamic part of solutions (due to inertia forces), whereas the quasistatic part is com
puted separately in closed form. This is favourable, because - depending on the type of loading - the 
quasistatic part may contain singularities or discontinuities, which are poorly modeled by series (Gibbs 
phenomenon). Eventually, the quasistatic response due to the additional (defect) loading represents a 
characteristic feature of elasto-plastic oscillators, namely the structural drift. 

Bending Vibrations of Beams and plates 
A most general version of the plastic source method applicable to three-dimensional motions of a solid 
including large strains has been derived by Irschik and Ziegler [5). Subsequent application of O'Alem
bert's principle and the principle of virtual displacements render an integral equation for the displace
ment vector. In the case of bending vibrations the virtual deflection w(i;,x) is assumed as the stati- . 
cal Green's function due to a transversal unit force F=1 at the point x in the midplane of the plate or 
at the axis of the beam. When considering the static equilibrium under the action of the unit force F=1 
the virtualdisplacements are specified to be the actual dynamic deflection w at constant time t. 
Total strains eij can be eliminated by inserting the constitutive relations and the linear elastic influ-

ence strains £jj by means of Hooke's law. The result within the limits of linearized geometric relations 

is 

In case of a beam dB~ = d~ ,dV~ = dA d~ and J.l. is the mass per unit length, hence, inte

gration is performed over the cross-section A. For a thin plate, dB~ = d~dll is an element of the 

midplane, dV~ = d~dlldC and J.l. represents the mass per unit area. Integration of nonlinear strains 

over thickness h renders the nonlinear portion of curvature components KN (beam) and Ktj (plate), 

Jdi_12!h/2 zet'fdz' ~=11 zeNdA J=1 z2dA 
IJ 3 IJ' J ' 

h -h/2 A A 
(2) 

The integrals in Eq. (1) represent the deflection due to external load p(x,t) = p(x) s(t), noncompatible 
strain components ef1 and inertia loading, respectively. Hence, formally superposition applies and the 

deflection may be split into two linear portions we and w·, where the former refers to external load, 
while the latter accounts for the inelastic strains e~. To improve numerical accuracy a further sepa-
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ration into the quasistatic solution and the dynamic part is emphasized, (see Boley and Barber [6] for 
the thermal shock problem) 

we = w§ + w&, w* = wi + wi) 

The quasi static response wi is a physical definition of the structural plastic drift. For a Kirchhoff 
plate and a Bernoulli-Euler beam follows, respectively 

In Eq. (4) fii.M are the static moment Green's functions, see e.g. [7]. The dynamic deflection is 
determined by the integral equation 

Eq.(5) is solved by means of a modal decomposition of Wo 

wf>(x,t) = r ~(t) <l>n(x) , wi)(x,t) = r Y;;(t) <l>n(x) 
n n 

(3) 

(6) 

Hence, the solution of the nonlinear problem is projected into the space of the orthogonal 
eigenfunctions <l>n(x) of the associated linear elastic structure. Insertion of Eq.(6h into Eq.(5) yields 

SDOF-oscillator equations for the generalized coordinates ~ 

where COn and ~n are the n·th eigenfrequency and light modal damping coefficient, respectively. 
Furthermore, 

(7) 

(8) 

Care must be taken in determining initial conditions for ~. In case of homogeneous total initial 
conditions they read 
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r e 
~(O) = - _n_ s(O), 

mn~ 
(9) 

The response due to nonlinear material effects has to be evaluated in a stepwise manner, since 

their intensity is governed by the momentary state of the structure. This yields an implicit problem for 
determining the increments ~KN within a time-step ~t = ti - ~-1. In contrast to KN(x,t) the increment 

~KN(x,t) is separabel into a time- and space-dependent part ~KN(x,Hi_1) = ~KN(x) f(Hi-1), t::;ti, 

where f(H-1) is a time shape function. Thus,the increments of the modal coordinates ~ Y~ are given 

as the solution of SDOF-oscillator equations in the time interval ~t. In case of a beam, [8] 

where ..j l-s~ '" 1 is assumed and 

L:(t.At) = (L M(t.x) "'"(x) dx) (1" 1(,) "P(-1;"",,(At - ,) hin ",,(At - ,) d') (11) 

Assuming I('t) as a linear ramp function, the second bracket in Eq.(11) has the value 

(1/~t)exp(-Sn(J)n~t)sin (J)n~t. 

Constitutive Relations 

The undamaged solid behaves according to an elasto-plastic kinematic hardening model 

(12) 

where cry is the yield stress and 11 marks the center 01 the yield surface in stress space. The yield-

limit is given by 

Damage is considered by Kachanov's model, see Krajcinovic [9] for a review, by changing the 

nominal stress to an effective stress 

cr ~cr = cr/(1 -D) , 11 ~ 11 1(1 -D) 

(13) 

(14) 



www.manaraa.com

79 

With Eq.(14), Eqs.(12) take the incremental form 

(15) 

with 
&.N = (l-D-lID) &'P + (D+lID) &. + lID (£- £P) (16) 

The yield limit in the damaged material is given by 

I (HI I = (l-D) cry (17) 

The evolution equation for the damage parameter is taken in a form similar to that of Frantziskonis 
and Desai [10], but the argument containing the dissipated plastic energy Wo instead of the accumu-

lated plastic strain 
(18) 

The increment of Wo is given by 

Numerical Results 
A clamped-clamped beam is considered, which is excited by an uniform load p(x) = Po sinusoidal in 

time with s(t) = sin vt. The following parameters are used in the computations : IIh = 20, Elcry = 

2000, El/E = 0.1, Pol3/EJ = 1.0, v/rol = 1.5 and ~ = 0.02 for all modes. The damage parameters 

(19) 

are Du = 0.95, a.cr~ = 50.0. The influence of damage is rendered most impressively in a moment

curvature plot at the clamped edges, Fig.1. The different parts of deflections of the inelastic beam are 

shown in Fig.2. Note the periodic but sectionally constant shape of the structural drift w; . This 
accounts for the additional peaks at multiples of v in the Fourier spectrum, Fig.3. Phase diagrams of 

the projection of the total deflection on the fundamental mode are given in Fig.4 for the elasto-plastic 

beam without and with damage. While in the first case there exists an attracting point (see Fig.5.b), 

no such point appears in the damaging system (Fig.S.c). As can be seen in Fig.4.b, there appears an 
"intermediate attracting orbit" in the phase space. At first trajectories seem to be attracted by this 

"intermediate orbit", but after a certain amount of time move inward and tend to a new one. This 

attractor, too, does not seem to be the final one, because there is still plastic energy dissipating, pro

ducing additional damage in only slightly deteriorated regions of the beam. After a sufficient amount 
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of damage in those sections, trajectories again will leave this second "intermediate attractor". The 

associated linear elastic system obviously shows an attracting fixed point (Fig.5.a), but at a location 

different from that in the elastic-plastic case. 

M/My 

P.s(tJ 

:=:=~I~II~~ Q Ih 
A 

Conclusions 

Fig. 1: Moment-curvature 
relation at clamped edge in elastic
plastic damaging beam. 
My = cry Ah/6. 

Fig. 2 : Different parts of midpoint 
deflections. t = 12(/l/EJ)1/2. 

Due to the evolutionary character of plastic flow and damage vibrations of such systems cannot be 
handled by the same methods suitable for nonlinear elastic oscillations. More information about re

sponse characteristics is gained by a subdivision into responses of the associated linear elastic 

system due to external load and arising defects if the structural state crosses the elastic limit. The 
quasistatic part of the response due to defects represents the plastic drift, a characteristic feature 
of elasto-plastic oscillators, which makes it so difficult to model such kinds of vibrations by approxi

mate global (non-incremental) methods (in case of random vibrations a possible way of including the 

drift process is described in (11)). Projections of the total response on the basic mode may serve 
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as approximate solutions comparable to a single term Ritz-Ansatz. Results show in some pictures 
chaos-like behaviour, although there are apparently no bifurcations. 
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Fig. 3: Absolute value of Fourier transform of midpoint deHection. 
a) without damage, b) with damage. 
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Fig. 4: Phas~ diagram of first mode projection of midpoint total deflection. 
a) without damage, b) with damage. 

Q1(t) = (1/h)~W(X,t) ~1(X) dx , 01 = (tlh)bW(X,t) ~1(X) die, x = x /I 
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Fig. 5 : Poincare maps of first mode 
projection of midpoint total de
Hection. a) elastic, b) elasto
plastic, c) elasto-plastic with 
damage. $ = 216° • 
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Sununary 

For the investigation of the brush vibrations a mechanical 
model with a rigid brush sliding on a predeformed slip ring 
surface is adopted. The rotation of the predeformed slip ring 
leads to brush vibrations causing a particular distribution of 
friction losses resulting then in a thermally induced 
deformation of the slip ring surface. At certain parameter 
configurations the thermal deformation reinforces the 
predeformation and the system becomes unstable. Due to a 
nonlinear contact geometry a strong sensitivity to small 
parameter variation exists. The model allows new explanations 
for measured phenomena. 
In addition chaotic motion has also been observed in the 
mathematical model. This motion occurs at higher predeformation 
levels of the slip ring surface. 

Introduction 

Large generators usually have steel collector rings and 

brushgear for conducting the field current to the rotor. These 

sliding contacts can lead to brush vibrations which have always 

been of central importance [1). 

For a generator running at 3000rpm the frequency spectrum of 

measured brush vibrations usually shows the highest amplitude 

between 1000 and 2500 Hz and only those frequencies which are a 

multiple of the rotational speed are present. Moreover, the 

vibrations are synchronized with the angular slip ring position 

and the pattern changes only slowly with time. The conclusion 

is therefore, that the slip ring surface has a decisive effect 

on the brush vibration phenomenon. 
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In the past brush vibrations have been interpreted as a type of 

self-excited vibrations due to the decreasing coefficient of 

friction with increasing sliding velocity [2],[3]. However, as 

was shown in [4], the damping induced by the brush material is 

enough to stabilize this kind of self-excitation. Thus we see 

that other causes must be found. 

Regenerative Brush Vibration 

We make the assumption that the slip ring surface is not 

exactly round but, due to fabrication tolerance for example, 

has an initial existing sinusoidal deformation rg (Fig. 1). As 

a result of the ring rotation, the surface has a velocity v and 

the brush would be excited in a steady-state vibration. It is 

further assumed, that as a result of the steady vibration, the 

friction force FR between the ring and the brush is time 

varying as well. Therefore the friction losses will show a 

sinusoidal distribution qR over the ring surface, too, 

producing a corresponding thermal surface displacement u in the 

radial direction . 

.. -
i· 

LR ..... ----•• ' 

Predeformed ring surface r 9 

! 

Friction force FR 

............ _----.. --, .. 

i I ",.1R 
• I 2n 

-"'f~--

~ 

u t ······· .. ·_·1"· .. ····· .. ··· .................... · .. ··· ...... · .. ··1···· ....................... _ ......... . 
Thermoelastic deformation u I 

Fig.1. Mechanism of the regenerative brush chatter 
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Depending on the phase shift w between the initial ring 

deformation rg and the thermal deformation u, the latter will 

be either increased or reduced. If in the region of deformation 

peaks, more energy is released than in the valleys, the 

deformation increases and a state of unstable growth exists. 

This brush vibration, caused by the feedback trough thermal 

ring deformation, will be referred to as regenerative brush 

chatter. It strongly depends on the nonlinear constraints the 

sliding brush is subject to, and it is this mechanism that will 

be explained subsequently. 

The Brush. Modelled as a Rigid Body 

For the investigation of this hypothesis, the brush is modelled 

as a rigid body. Thus in the subsequent calculation of energy 

distribution on the slipring surface, the location of the 

contact between the brush and the ring is taken into account 

along with the magnitude of the friction force FR. 

A model is set up, similar to that used in [3]. The most 

important difference is the ring surface: in [3], the surface 

was assumed to be perfectly round, whereas we start with a 

surface having an initial sinusoidal deformation (Fig. 2), 

leading to a nonlinear contact geometry. 

The sliding surface of the brush forms an arc of radius Re 

about the instantaneous center of curvature at Me. The center 

of curvature for the slip ring surface area at the contact A is 

at MR. At contact A there is a normal force FN in the radial 

direction and a friction force FR in the tangential direction, 

in accordance with Coulomb's law. 

The brush itself has two DOF, and it is also assumed that the 

brush is always in contact with the slip ring. 

Clearence ssP which normally exists between the brush holder 

and the brush is also taken into account. 

The location of the contact is dependent in a very sensitive 

way on both the position of the brush and the angular position 

of the rotor. Due to this kinematic constraint, the 

mathematical model becomes strongly nonlinear. 
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Fig.2. Model used for calculating the brush vibrations 

We obtain the time-variable differential equation system of the 
form, derived in detail in [4]: 

m·x = f(x,x,a,a,t,various parameters) (1 ) 

J·a = g(x,x,a,a,t,various parameters) (2 ) 

Because of the nonlinearity and the time-dependence, these 
equations are handled by numerical simulation, thus yielding 
the magnitude and position of the friction force Fa between the 
brush and the slipring. The thermal displacement of the slip 

ring surface is calculated using the relations in [5]. The 
values used for the simulation are given in Table 1. 
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Brush thickness D = 25mm Brush force Fa = llN 
Distance L3 L3= 20mm Tangent. force F':[' = 5N 
Distance L4 L4= 20mm Coeff. of friction ~ = 0.16 
Distance Ls Ls= 25mm Mass of brush m =.05kg 
Stiffness c = 106 N/m Moment of inertia J=13·10- 6 kgm2 
Damping Dx=d/J2c·m Dx= 0.01 

Table 1: Values used in the analysis 

As the calculations have shown, the sensitivity factor 

e = R/(Ra-R) 
is crucial for the occurence of regenerative brush chatter. 
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In Fig.3 the sinusoidal portion U1 of the thermal deformation 
of the slip ring surface is shown for two different sensitivity 
factors. For the greater sensitivity factor in Fig.3b the ther
mal deformation is higher at the top of the wave than between 
the tops. Consequently the initial slipring deformation rg is 
amplified by the thermal deformation, and the brushes are ex
cited into stronger vibration. The behaviour is thus unstable. 
The results from simulation compare very nicely to data and 
phenomena encountered in various experiments [4], and 
countermeasures for avoiding this built-up of vibrations are 

being derived. 

~ ;- lherm.induced 
::J (/-tm] ring predeforma lion rg ["m] deformalion .. - .. - ul " ... 

"0 ·0 

\/. I c 0.5 lherm.induced c 0.5 
0 0 prede-deformation ul \ ring 
.:!' \/----'" 0> \ forma lion r g '-

-OJ -OJ 

\ " C ,/.' "\ C \ CI> CI> 

E 0.0 
" E 0.0 

I Q) ", ""LR CI> i LR 0 0 
0 " '. 0 

/ Q. Q. 
Vl Vl 

0 0 
-0.5 -0.5 \ / 

0) Ring surface b) 
'--_.,' Ring surface 

Fig.3. Comparison between stable behaviour (a) and unstable 
behaviour (b). Thermally induced displacement U1 and, for com
parison, the ring predeformation rg at 9=0; ro/R=l. 05 '10- 6 ; 

wave length: LR =2·n·R/32. 
a) e=38, stable behaviour; b) e=95, unstable behaviour 
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Chaotic Behaviour of Brush Vibration 

The next step is to study how the brush vibrations behave when 

the thermal deformations develop further and excite the brushes 

more strongly. Fig.4 shows a number of phase curves for the 

inclination angle a of the brush, for various relative surface 

deformations ro/R of the slip ring, where ro is the small 

deviation from the ideal ring with radius R. 

As can be seen, subharmonic vibrations occur at higher 

disturbance amplitudes. At disturbance amplitudes of 

ro/R > 2.3.10- 6 , 

periodicity could no longer be found, even though the 

simulation was continued for several hundred periods Ta. It 

must therefore be assumed that a condition of chaotic behaviour 

[6] is present. 

Additional simulations have shown, that for the occurence of 

the chaotic vibration behaviour neither the tangential motion 

nor the clearence between the brushes and the holder are a 

determining factor. 

Using (see Fig.4) 

VJ = L3 ./2c/J 

and 

the equation of motion (1) and (2) are reduced to the following 

non-linear equation: 

a + 2·D"~"a + ~2"a + ~"Ls·m/J"Y(t,a) + 
XA(t,a)"m/J"y(t,a) + XA(t,a) "FB/J = o. (3 ) 

It should be noted that both the radial brush acceleration y 

and the distance XA depend in a complicated and sensitive way 

on time t and angle a [4]. 
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Fig. 4. Inclination angle a in the phase plane for various 
specific ring surface deformations ro/R; e=190; La =2·n·R/32. 
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From this equation it can be shown that it is the coefficient 
of friction ~ between the brush and the slip ring, the 
dimensions of the brush, and the radial force Fa of the brush 
spring, which have a decisive effect on the occurence of 
chaotic vibration behaviour. 

Conclusions 

The calculations show that the system stability depends on a 
single pronounced sensitivity factor, and that is the ratio of 
the brush surface radius to the slipring radius. If the brush 
radius is close to the slip ring radius, the thermal 
deformation increases the existing deformation, and the system 
becames unstable. High brush vibrations occur in theory and in 
experiments which we have designated as regenerative brush 
chatter. 
It has further been found in simulations that with large ring 
deformation, the brush vibration tends toward chaotic 
behaviour. 
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Summary 

Recent results obtained by the authors on the utility of truncated point mappings applicable to 
the analysis of multidimensional, multiparameter, periodic nonlinear systems are presented here, 
Based on multinomial truncation, an explicit analytical expression is determined for the point 
mapping in terms of the states and parameters of the system to any order of approximation. By 
combining this approach with analytical techniques, such as the perturbation method employed 
here, we obtain a powerful tool for finding periodic solutions and for analyzing their stability. 
A new approach for analyzing nonlinear systems which combines the techniques of truncated 
point mapping and cell mapping methods is also described here. 

Introduction 

The analysis of periodic differential equations presents a great mathematical challenge and has 
attracted a great deal of theoretical research. The importance of these periodic system stems 
from their many applications to various fields of science and engineering. An attractive way 
to analyze periodic systems is to formulate their discrete-time dynamics by defining a point 
mapping, i.e., a Poincare map. The dynamics of the original system is then described in terms of 
difference equations rather than in terms of time varying differential equations. Point mapping 
techniques are widely employed today not only to study theoretical aspects of discrete time 
systems but also to provide a computational basis for understanding their global dynamics, see 
[1,2,4,7,10,12,14]. 

One of the main obstacles in applying the point mapping techniques to real problems is in 
obtaining the corresponding difference equations. Exact point mappings can only be determined 
in particular cases, such as those of impulsive excitation problems discussed in [10]. For general 
systems one is forced to accept an approximation to the point mapping. The aim of this paper 
is to introduce a numerical/analytical method based on the point mapping representation of 
dynamical systems which, when combined with other techniques such as perturbation analysis 
and cell mapping, forms a powerful tool for analyzing nonlinear systems. The method given 
by Flashner and Hsu [5] is modified to obtain approximate (truncated) point mappings by in
cluding variations in system parameters. This permits us to perform perturbation-like analysis. 
However, the analysis is carried out on discrete dynamical equations as opposed to conventional 
techniques that are usually applied to continuous-time dynamics of the system. Determination 
of periodic solutions using truncated point mappings reduces to solving multinomial equations 
which, when combined with perturbation techniques, provides a powerful &IIalysis toel for es
tablishing stability criteria for a large class of vibration problems. The proposed approach can 
handle multidimensional and multiparameter systems and higher order perturbations that are 
very difficult to compute by other methods can be readily obtained. 
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It is known that the method of cell mapping (developed by Hsu [10]) introduces error in the 
time response of the system due to spatial discretization. A new application of the truncated 
point mappings to locate trajectories of the system inside the cells is provided in this paper. 
This approach provides a convenient way to increase the accuracy of time response and thus to 
reduce the error caused by discretization of the state space. 

Point Mapping Analysis 

Consider a dynamical system described by a set of N ordinary differential equations 

i(t) = f(t, x(t), s) (1) 

where t E R+ denotes time, x E RN is the state vector, s E RL is a parameter vector, and 
f: R+ x RN X RL -> RN is analytic for every x for a given value of the parameter vector 
s. Moreover, f is assumed to be periodic in t with period T. One can analyze this system by 
observing its state once at every period T. The dynamic relationship between the state of the 
system at t = nT and the state at t = (n + l)T results in a set of difference equations, also 
called a point mapping or the Poincare map, which can be expressed as 

x(n+ 1) = G(x(n), s), n = 1,2,,,, (2) 

where x( n + 1) and x( n) are the states of the system at t = (n + l)T and t = nT, respectively. 
Note that because of the smoothness condition on f, equation (1) satisfies Lipschitz conditions 
and G is one to one with s fixed. In order to analyze periodic solutions of (1), we use the notion 
ofa P-K solution. It is a periodic solution (equivalently aperiodic solution of period KT of (1» 
of the point mapping (2) for some s = s·, and consists of K distinct points x·(j), j = 1,2"", K 
such that 

x·(m+ 1) 
x·(l) 

G(x·(m), s·), m = 1,2, .. ·,K-1 

= GK (x·(l), s·) 
(3) 

(4) 

Finding a P - K solution of the corresponding point mapping is equivalent to finding a periodic 
solution of the original continuous time system. Having found a P - K solution by solving the 
algebraic system of equations (4), its local stability properties are determined by the eigenvalues 
of the matrix H given by [10] 

H = H·(K)H·(K -1) ... H·(l), H·(j) = VxG(x·(j),s·) (5) 

For two-dimensional point mappings, the asymptotic stability conditions can be expressed by 

1 ± tr H + det H > 0, det H < 1 (6) 

To develop an algorithm for determining approximate point mappings of the system (1), we 
note that the function f(t,x(t),s) is analytic and can be expressed by a Taylor series of the 
form f(t,x,s) = PIe(t,x,s) where PIe(t,x,s) denotes a vector homogeneous polynomial of degree 
k in the state variables :Ili, i = 1, 2, ••• , N. Based on this, the numerical algorithm presented in 
[6,8] computes an approximation to the point mapping of (1) up to a polynomial of degree k by 
employing the Runge-Kutta method. The integration scheme used of the form 

M 

x(tp + h) = x(tp ) + h :E dmkm(t, x) (7) 
m=l 

where M is the order of the Runge-Kutta method, h is the time step, and dm are certain 
constants, see [9]. The vectors km' m = 1,2"", M, for equation (1) are given by 

(8) 
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The constants a". and Cm are given by the particular Runge-Kutta method to be used with 
a1 = 0 and C1 = o. The proposed numerical algorithm takes advantage of the fact that the oper
ations of truncation and telescoping on multinomials can be interchanged, see [15]. Additionally, 
numerical integration can be broken up into a series of polynomial telescoping and truncation 
operations. Successive application of the Runge-Kutta scheme given by (7) to the initial state 
x(n) leads to the form x(n + 1) = Gk(x(n), s), where Gk is a a truncated point mapping of 
degree k and x(n + 1) is the state of the system at the end of one period of time. 

The dependence of the coefficients of Gk on system's parameters can also be obtained using 
the proposed approach by assuming that the coefficients of Pk(t, x, s) consist of powers of the 
components of the vector s. The polynomial telescoping routine allows us to to keep track of 
the powers of the components of x and to perform an appropriate truncation with respect to s. 
For details regarding the truncated point mapping algorithm, see [6,8]. 

Analysis of van der Pol's equation 

To determine an approximate point mapping of the van der Pol's equation 

Z + :z: - E(l - :z:2):i: = 0, 

we transform it by using the nondimensional time T = wt to obtain 

d2:z: 1 E 2 d:z: 
dT2 + W2:Z: - ;(1 -:z: ) dT = o. (9) 

To obtain a truncated point mapping of O(E), let w = 1+Ew1 +O(E2). Then (9) maybe expressed 
as 

(10) 

Since the linearized equation corresponding to E = 0 of (9) has periodic solutions of period 211", 
we integrate equation (34) from T = 0 to T = 211" with step size h = 211"/100 and M = 4. The 
resulting point mapping G of O(E) (see [8]) that includes all powers of:Z:1 and :Z:2 is 

:Z:1(n+ 1) = :Z:1(n) - 211"Ew1:Z:2(n) + ~E(4 - r2(n»z1(n) (11) 
1I"E 

:Z:2(n + 1) = :Z:2(n) + 211"Ew1:Z:l(n) + 4(4 - r2(n»:Z:2(n) 

where r(n) = J:z:Hn) + :z:i(n). By letting :Z:1 = r cos (J, :Z:2 = r sin (J with r2(n + 1) 
:z:i(n + 1) + :z:i(n + 1), then the map (11) becomes one-dimensional point mapping 

r(n + 1) == G(r(n» = { 1 + E; (4 - r2(n»} r(n) (12) 

which is independent of Wl. By analyzing P - 1 solutions of the map (11), one obtains Wl = 0 
and r2(r2 - 4) = o. While the solution r = 0 corresponds to the equilibrium at the origin, the 
solution r = 2 corresponds to the limit cycle. These P - 1 solutions and their stability coincide 
with those of the classical perturbation analysis. 

In order to derive the point mapping of O(E2), let w = 1 + E2W2 + O(~). Then (9) becomes 
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and contains all the powers of Zl and Z2. In polar coordinates, P - 1 solutions (amplitude r) 
and W2 are determined from 

3£11" r4 _ (1 + 2£11" - 2£ cos () sin3 B)r2 + 2(2 + £11") = 0 
8 

W2 = - ;2 {4 - 3r2 + ~r4 + 2r2(r2 - 4) cos4 (}} , 0:::; () :::; 211" 

(14) 

As opposed to the classical perturbation result, W2 is dependent on the amplitude and phase, 
and W2 = -is for r = 2 only. For a detailed analysis of solutions of (14) and for high order 
truncated point mappings, see [8]. 

Analysis of Duffing's equation 

We consider the Dufling's equation given by 

(15) 

where the £1' is the damping coefficient, p the natural frequency, £{3 the coefficient of the hard 
(or 50ft) spring, w the forcing frequency, and £Fo and £Go the forcing amplitudes. We present 
point mapping results of order £ to compare with the perturbation results. Let T = wt, w = 
p + £W1 + 0(£2), Zl = z and Z2 = dz/dT. Equation (15) containing terms up to 0(£) can be 
expressed as 

dZ1 dZ 2 ( 2£W1) £1' £ ( 3 • ) 
dT = Z2, dr = - 1 - P Zl - pZ2 + p2 -(3Z1 + Fo cos T + Go Sill T (16) 

We integrate (16) from T = 0 to T = 211" with step size h = 211"/100 and M = 4. Define the 

amplitude r(n) = JzHn) + zHn). The truncated point mapping G of 0(£): 

(17) 

where the substitution 2£W1P = w2 - p2 has been made. Notice that the nonlinear terms in (17) 
are entirely due to {3. Since f in (15) is odd in Zl and Z2, the point map G above is also odd in 
Zl and Z2. Moreover, the Hamiltonian structure is retained by G as £ ..... O. The invariants of 
the Jacobian matrix H of G are given by 

The frequency response of the system is determined by P - 1 solutions of the map (17): 

• + {2 2 3{3.2}. G • {2 2 3{3 .2}. D €P.PZ1 W - P - T r z2 = -€ 0, EP.PZ2 - W - P - T r zl = -E.<'O (18) 

where r· = J zi2 + z;2. Defining the forcing amplitude to be F2 = FJ + G~, it is easily deduced 
that P - 1 solutions must satisfy the frequency-amplitude relationship 

(19) 
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with period 27r/w = ~ (1- ~). The stability of P - 1 solutions determined by (18) can be 

based on the geometric shape of the resonance curves (19). Let 

R(w, r) = [w2 _ p2 _ 3: r2f r2 + E2j.'2p2r2 _ E2p2 

Then, the amplitude-frequency relationship (19) is expressed by R(w, r·) = O. Noting that the 
normal to the curve R(w, r) along the r-direction is of 0(E2) and 

1 + tr H(r·) + det H(r·) = 4 (1 _ 7rE/1) + ~ [OR] 
p 2p4r• or r=r. 

1 - tr H(r·) + det H(r·) 7r2 [OR] 
2p4r• or r=r. 

the stability of P -1 solutions given by (18) is determined by the sign of the vertical component 
of the normal to the response curve R(w, r·). It follows from stability conditions that for E/1 > 0, 
the P - 1 solutions of the map (17) are 

asymptotically stable if [OR] > 0 unstable if 
or r=r. ' 

[OR] 0 
or r=r. < 

Our results agree with those obtained by classical perturbation techniques. 

Analysis of Parametrically Excited Dulling's equation 

We consider a nonlinear form of Mathieu's equation given by 

z + 2>"/1z + (6 + 2>"E cos 2t)z + >..az3 = 0 

(20) 

(21) 

where>.. is assumed to be a small parameter for the purpose obtaining a truncated point mapping. 
Let /1 > O. To perform a primary resonance study, let 6 = 60 + 5 = 1 + >..0- and rewrite (22) as 

(22) 

The truncated point mapping G of 0(>"), obtained by integrating (22) from t = 0 to t = 211" 
with h = 211"/500, can be expressed as 

zl(n+1) = (1-211">"/1)Zl+1I">,,(0--E+3~ar2)Z2 

z2(n+l) = (1-27r>"/1)Z2-7r>,,(0-+E+3~ar2)zl 

where r2 = z~ + :c~. The invariants of H can be shown to be 

(23) 

tr H = 2(1- 27r>"/1) (24) 

det H = (1- 211">"/1)2 + 11"2>..2 {0-2 _ E2 + 2~~2 r4 + 3; [20-r2 - E(:C~ - :c~)]} (25) 

The P - 1 solutions of (23) are obtained by solving the algebraic equations 

- 2/1:cr + (0- - f; + 3: ar2) :c; = 0, 2/1z; + (0- - f; + 3: ar2) z; = 0 (26) 

There exists a trivial P - 1 solution x· = 0 of (26) whose stability is determined by the sign of 
the expression 
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Hence, x* = 0 is asymptotically stable if E2 < 0'2 + 4Jl2 and is unstable if E2 > 0'2 + 4Jl2. 

The non-trivial P - 1 solutions of (26) lead to the frequency response 

(27) 

which exist when E2 2: 4Jl2. The stability of these solutions can be analyzed in a manner similar 
to the case of Duffing's equation. Define the resonance curve R( 0', r) as 

( 3a)2 R(O', r) = 0' + Tr2 - E2 + 4Jl2 (28) 

and note that a: = 3ar (0' + 3:r2). With some algebraic manipulations, it can be shown that 

det H(r*) = 1 - 411'}"Jl + r* [~~] r=r. 

As before, the stability of the P - 1 solutions given by (27) can be inferred from 

det H(r*) 

1 + tr H(r*) + det H(r*) 

1 - tr H(r*) + det H(r*) 

(29) 

Once a P - 1 solution is calculated from (27), then its stability can be established by the sign 
of the vertical component of the normal to the solution curve R( 0', r*). We note that there 
are only two positive solutions of (27), ri and ri with ri > ri. The P - 1 solution having the 
larger amplitude is asymptotically stable while the one having the smaller amplitude is unstable. 
When these two steady state responses coincide, higher order terms are needed to ascertain their 
stability. These results agree with those obtained by perturbation analysis, see [3,13]. 

Application to Cell Mapping Method 

When the cell mapping method (see Hsu [10]) is used to determine the time response of nonlinear 
dynamical systems, an error is introduced due to spatial discretization. Moreover, the error is 
accumulated as time grows. This inaccuracy may lead to erroneous results or may force one to 
use extremely small cell sizes imposing computational restrictions, especially when treating high 
order systems. Recently, Tongue [16] and Tongue and Gu [17] have used linear interpolation 
technique and its refinements to improve on the accuracy of the simple cell mapping method. 
Here, we use the truncated point mapping approach to approximately locate trajectories inside 
the cells. This approximation can be carried out up to any order of multinomial approximation 
and can be developed for systems of arbitrary dimension. In addition, the analy~ical expression 
obtained for the truncated point mapping permits us to study the stability properties of the 
cell-to-cell mapping, which is quite important in the analysis of periodic solutions and chaotic 
behavior. 

Let <p*(t) E aN be a trajectory of the dynamical system (1) and e(t) E aN be its perturba
tion such that e(t) = x(t) -<p*(t). Assuming that f is analytic, the perturbed trajectory satisfies 
e(t) = Pm(e,t) + h(e,t), where Pm is a multinomial of degree mine and h is the remainder 
which is a higher order multinomial. In some neighborhood of <p*(t) for which lIell < p, the 
truncated system 

e(t) = Pm(e,t) (30) 

provides a good approximation to the dynamics of the perturbed system. Moreover, the stability 
of the system trajectory <p*(t) can be determined from the system (30) by using Lyapunov's 
indirect method and its extension, see [11,18]. 
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Assume that the system (1) is integrated from t = kT to t = (k + l)T, for some integer k, 
thus determining a solution q,·{t) for t E [kT, (k+ l)T]. Also, assume that the coefficients of the 
mth order approximation to the point mapping obtained by using (30) is in the form 

€(k + 1) = GmWk» (31) 

where Gm is a multinomial of order m. Then, since €(k + 1) = x«k + l)T) - q,·«k + l)T) and 
€(k) = x{kT) - q,·{kT), 1I€(kT)1I < P defines a region about the location q,·(t) and equation (31) 
approximates the map of any point in this region. If we choose the norm II . II to be the infinity 
norm, that is II€II = m8.Xi lI€ill, with an appropriate scaling, then II€II < P defines a rectangular 
region. This rectangular region is considered by Hsu [10] as a definition of a cell occupying a 
region of state space. Therefore, the map given by equation in (31) defines a map of the entire 
cell. When m = 1, the approximation is linear and one can express the map in (31) as 

€(k + 1) = H€(k) (32) 

where H is an N X N matrix. The system (32) is linear and implies that straight lines map into 
straight lines and the mapping of the boundaries of a cell is defined by straight lines. Note that 
(32) defines the map of any point within the cell. 

To compute a trajectory of the nonlinear system (1) using the modified cell mapping ap
proach, let q" (0) represent coordinates of the center point of a cell i. Let cell j be the image 
of the cell i (mapping of cell i). and q,HT) represent the map of q,,(0). Let €(i) represents the 
perturbation of the trajectory with respect to the center of the cell i. Suppose that the region 
of state space under consideration contains a total of Nc cells. For each cell i = 1,2,···, Nc 
in the cell state space, compute the quantity q,,(T) and the coefficients of the truncated point 
mapping G!!>(€). For a linear approximation, this result is provided by N X N matrices H(i). 

The steps needed for trajectory computing algorithm can be summarized as follows: 

I. Set k = 0, i = 0, €(i){O) = x(O) - q,,(0). 

II. Compute €(i)(k + 1) using equation (30), and the mapping of the trajectory point 
x«k + l)T) = q,,(T) + €(i)(k + 1). 

m: Compute the perturbation about the center point of the mapped cell j given by 

IV. Set k = k + 1, i = j and repeat steps II and m above until all the cells are examined. 

With the above algorithm, the following information regarding the dynamics of the system can be 
obtained: (i) periodic solutions (or P-K solutions) can be determined when IIx(k)-x(k+K)1I < 
f, where f > 0 is a preset tolerance and K corresponds to the periodicity of the solution, and 
(ii) the stability of periodic solutions which can be determined analytically by computing the 
eigenvalues of the matrix H = II~l H(i). 

The truncated point mapping technique can be used to advantage for deVeloping an efficient 
tool for the cell mapping analysis of nonlinear systems. The approach is general in the sense that 
it is applicable to an arbitrary number of degrees of freedom and the computational procedure 
does not change for different orders of approximation. This is an advantage over the interpolated 
cell mapping introduced in [17]. Further research on this topic is currently underway. 
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Summary 
The chaotic oscillation of a buckled beam under sinusoidally 
varying and static constant transverse external forces is 
investigated. A harmonic balance method and a direct numerical 
integration are applied to a Duffings equation model of the 
buckled beam. For a small transverse constant force, there 
exist three static equilibrium points, and the near contact 
between the two orbits of a stable and an unstable limit cycle 
in the phase plane can predict the onset of chaos. For a large 
transverse constant force, there exists only one static 
equilibrium point, but there may exist three different dynamic 
response amplitudes due to nonlinear resonance phenomena. The 
near contact between two vibration regions of a stable and an 
unstable limit cycle can predict the onset of chaos. 

Introduction 

A one mode model of the oscillation of a buckled beam under 

sinusoidally varying plus constant external force can be written 

as a particular form of Duffings equation with a negative 

linear stiffness and a positive cubic stiffness [1] 

1 
A+rA--A( 1 _Al) 

2 
F s + F 0 sin t» t (1) 

where r is a damping coefficient, F s a transverse static 

force, F 0 a sinu-soidal force- amplitude, t» an excitation 

frequency and t time. It is known that this equation with 

F s = 0 has a solution with chaotic oscillations under certain 

conditions of r, F 0 , and t» [2][3]. 

In the case of F s 0, three static equilibrium positions can 

be obtained by neglecting the terms involving time in equation 

(1), and two of the static equilibrium positions are stable and 

the third is unstable with respect to infinitesimal disturbances. 

A stable or unstable steady state limit cycle around each 
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static equilibrium position can be considered for a small force 

amplitude 

wi th F 0 

F 0 , and the magnitudes of the limit cycles grow 

This is a case of a symmetric two-well-potential, 

and the orbits of the two stable limit cycles nearly contact 

the orbit of the unstable limit cycle on the phase plane (A, 

A) at a certain value of the force amplitude F 0 • This value 

of F 0 provides a very good approximation to the lowest onset 

boundary of sustained chaos [3]. 

It is of interest to investigate the role and effect of the 

transverse static force, F s , on the onset of chaos by observing 

the near contact of orbits on the phase plane. 

Analysis and discussion 

1. Small F s For a small F s (>0), three static equilibrium 

positions, As, can be obtained from equation (1) by 

neglecting the terms involving time, as follows, 

1 
- -A s ( 1 - As Z ) = 

2 
F s • (2 ) 

Two of the three static equilibrium positions are stable and the 

third is unstable (Figs.l(a) and (b». 

As 
I co 2 

1 stable 
n I 

1 )stable 
1 ill 

FScr= {3==D.1925 , 3 3 Fs 0 Fs 0 

-0. 
- 1 ill 'stable 

II F == 0.1925 
S,cr 

3'13 - 1 

(a) A s vs F s ( b) (J) n Z VS F s 

r'ig.1. Static equilibrium position A s for static transverse 
force F s and natural frequency (J) n of a small oscillation 
around the equilibrium position. 
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(a) Stable and unstable limit 
The excitation frequency is the natural 
oscillation around the stable equilibrium 
disp~acement region of the phase plane; 

frequency of a small 
point in the negative 
fJJ=fJJ n =0.858. 
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(b) Ampli tude (c) Vibration bounds 

E' ig. 2. Resonance for a sma 11 F s Fs =0.08, Fa =0.10. 

The onset of chaos may be explained in a similar manner to the 

case of F s 0 for the case of a small F s (>0), although 

the phase plane portrait for non-zero F s does not have a 

mirror image with respect to displacement, because the two-well

potential is not symmetric (Fig.l(a». Two stable steady-state 

limit cycles and one unstable limit cycle around each static 

equilibrium position can be considered on the phase plane, as 

shown in Fig.2(a). In this paper, the magnitude of the damping 
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coefficient, T, is 0.168 [3]. The orbits of the stable limit 

cycles are obtained directly through numerical integration of 

the governing equation (1). Resonance curves shown in Figs.2(b) 

and (c) are calculated by the harmonic balance method which 

contains one fundamental harmonic term and one constant term, 

viz. 

A (t) A 0 sin( (J) t + ¢) + C ( 3 ) 

where C=±l (only) when Ao O. 

One cannot predict the onset of chaos from the amplitude

excitation relation such as Fig.2(b), because each center of 

vibrations C varies with amplitude A 0 of response. The 

phase plane portrait of steady-state limit cycles has a mirror 

image with respect to velocity (Fig.2(a», so a displacement

excitation frequency relation such as Fig.2(c) is useful to 

determine the near intersection between the stable and unstable 

limit cycle orbits. Figure 2(a) can be considered to be a 

cutting plane of Fig.2(c) at a certain cutting-plane line of 

exci ta tion frequency, (J) = (J) n 

The magnitude of the limit cycles grow with force amplitude, and 

so the regions of possible displacement of response become 

wider in Fig.2(c). And at the same time, the frequency at the 

intersection point increases with force amplitude. Therefore, 

if the force amplitude is larger than the force level of the 

resonance curve shown here and the excitation frequency is 

fixed to the frequency of the intersection point, or if the 

excitation frequency is smaller than the frequency of the 

intersection point and the force amplitude is fixed as shown . 
here, the orbit of response on the phase plane ( A, A) is 

chaotic and wanders around two stable equilibrium points and 

one unstable equilibrium point. Numerical studies showed a good 

agreement with the onset boundary of chaos determined by Lhe 

intersection of two regions, one of which is the region where a 

stable limit cycle exists and the other of which is the region 

where an unstable limit cycle is present. 

This is the basic idea of a necessary condition for the lowest 

onset of chaos for a small F s The limit cycles approach 
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each other monotonically with increasing force amplitude on the 

phase plane, but not linearly in actual cases, because the 

system often undergoes a series of period doubling bifurcations. 

2. Large F s The two static equilibrium points, A s 

approach each other with increasing F s , as shown in Figs.l, 

and merge at a critical value, F s • cr = 1/3"-3 (~0.1925), which 

is obtained from static equation (2). Beyond the critical 

value, only one static equilibrium position, which is positive 

and stable, remains. An asymmetric two-well-potential changes 

to an asymmetric one-well-potential at the critical value F s. cr. 

This may be thought to imply that there is no chaos for a large 

transverse static force beyond this point. This is true, 

however, only if one predicts the onset of chaos by applying 

the criterion stated above that the existence of two stable and 

one unstable static equilibrium position is a necessary 

condition of chaos. Actually, however, chaos due to a different 

mechanism of onset occurs in the case for F s ;;;;; F s. cr' 
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(b) Phase plane trajectory; 
{JJ = {JJn =1.268. 

Solid broad line: 
stable limit cycle; 

broken broad line: 
unstable limit cycle; 

thin line: 
chaotic trajectory. 

Fig.3. Resonance for a large F s Fs =0.24, Fo =0.60. 
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The governing equation (1) is essentially nonlinear regardless 

of the magnitude of transverse static force F s • This may 

imply that the resonance curve is bent, allowing the system to 

have nonlinear jumping phenomena, if the force amplitude F 0 is 

large enough. The displacement-excitation relation in Fig.3(a), 

where F s > F s •• r' shows that multi-value amplitudes are 

possible for a certain range of excitation frequency. Two of 

the magnitudes of the resonance are stable and the third is 

unstable. They grow with force amplitude, and the frequency of 

an upper perpendicular point on the resonance curve also 

increases. Therefore, three different orbits with different 

amplitudes and different centers exist for a frequency just 

below that of the upper perpendicular point or for a force 

amplitude just above the value shown here. Chaos may occur 

under this condition. 

The orbits calculated from the harmonic balance method using 

A (t) = A 0 I sin ((0 t + if') + A 0 Z cos ( 2 (0 t + if' ) 

+ A 03 sin ( 3 (0 t + if') + C (4) 

are also shown together in Fig.3(a), where the three harmonic 

terms included are chosen from the observation of the phase 

plane portrait of the limit cycle. There is no significant 

change of resonance curves between the two and four term 

harmonic balance methods. 

Chaotic motion is actually observed. A study using a direct 

numerical integration of the governing equation (1) gives the 

onset boundary of chaos. For example, for F s = 0.24 and the 

excitation frequency set to (On , which is the natural frequency 

of small oscillation around the static equilibrium position for 

the given F s , an onset boundary of force amplitude F o. c r 

was found to be 0.46. 

I 

A chaotic trajectory and three orbits of limit cycles are shown 

in Fig.3(b), corresponding to the case of Fig.3(a). The 
trajectory is obtained by the direct numerical integration, and 

the limit cycles are obtained by the harmonic balance of 

equation (4). 
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The upper perpendicular point represents an onset boundary of 

chaos, F o. er, because, for a fixed excitation frequency with 

increasing force amplitude, the upper perpendicular point comes 

first as a trigger of multiple amplitude. Period doubling was 

observed just before the critical value for the onset of 

multiple amplitude, when F 0 is increased. 

The frequency range where multiple amplitude appears is a 
necessary condition for chaos. Three centers of vibration 

appear in this case dynamically, while by contrast three 

equilibrium points appear statically for a small F s « F s. e r ). 

In the case that F 0 is large enough, chaos of this dynamic 

type is possible even for a small F s • 
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2.tion 
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o~~ __ 7r.~ __ ~~~~b~a ____ ~ 
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Fig.4. Vibration bounds of resonance; F s = 0.24, F 0 = 0.50. 
Force amplitude F 0 = 0.50 is just above the onset boundary of 
chaos for Cd = OJ n = 1.268. 

a ,., 1.2"'n stable limit cycle of one-period motion, 
b ,., 1.1,., n stable limit cycle of two-period motion, 
c,., ,., n, chaotic orbit, 
d ,., 0.9"'n chaotic orbit, 
e ,., 0.8"'n stable limit cycle of one-period motion. 

The presence of multiple amplitudes is not a sufficient 

condition of chaos. Chaos occurs at an excitation frequency 

just below the upper perpendicular point, but a stable limit 

cycle appears again at a much lower excitation frequency in the 

multiple amplitude range. For example, an orbit for excitation 
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frequency 0) = 0.80) n in Fig.4 is a stable limit cycle. It is 

interesting to note that period doubling was observed at the 

excitation frequency just above the upper perpendicular point, 

for example, 0) = 1.10) n • 

Concluding remarks 

(I) For a small F s ( < F s •• r ), the near contact between a 

stable limit cycle and an unstable limit cycle on the phase 

plane closely predicts the onset of chaos. The chaotic motion 

wanders on the phase plane around two stable and one unstable 

static equilibrium points. 

(2) For a large F s ( ~ F s •• r ), another approach to the 

onset of chaos is possible. Multiple amplitude nonlinear 

resonance is a necessary condition for chaos of this type. An 

upper perpendicular point of the resonance curve stands for the 

onset of chaos with increasing force amplitude, because it is 

the onset of two stable and one unstable amplitudes dynamically. 

A near contact between a stable limit cycle orbit and an 

unstable one on the phase plane closely predicts the onset of 

chaos. The chaotic motion wanders on a phase plane around the 

three centers of the three vibrations, two of which are stable 

and the third is unstable. 

(3) The chaos of the above-mentioned type (2) is possible even 

for a small F s , if the force amplitude F 0 is large enough. 

(4) The presence of multiple amplitudes per se is not a 

sufficient condition of chaos. 
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Coexistence of Periodic Points and Chaos 
in a Nonlinear Discrete-lime System 
K.HIRAI 

Department of Systems Engineering, 
Faculty of Engineering, 
Kobe University, Kobe, Japan 

Summary 
The coexistence phenomenon of periodic points and chaos 

in a first and second order discrete-time nonlinear 
control system is discussed. The coexistence phenomenon 
discussed here is such that the coexisting different kinds 
of periodic points or chaotic attractors do appear 
catastrophically in the bifurcation diagram. Several modes 
of such coexistence phenomenon are shown. It is shown that 
the system behavior depends not only upon the initial values 
but also upon the parameter values. 

1. Introduction 

One of the most interesting topics in nonlinear system 

research is chaos. Since the discovery of chaotic behavior, 

there are many investigations on chaos such as the 

occurrence condition, system structure, and many related 

problems [1],[2]. 

The problem of the coexistence phenomenon of periodic 

points and chaos is also an interesting topic. In nonlinear 

system, it is well known that different kinds of periodic 

points or chaotic at tractors coexist if the initial values 

are changed. The coexistence phenomenon discussed in this 

paper is such that the coexisting periodic points or chaotic 

at tractors do appear catastrophically in the bifurcation 

diagram. It is interesting that to which attractors the 

system behavior is attracted depends not only upon the 

initial values but also upon the parameter values. 

Such coexistence phenomenon has hitherto been observed, 

e.g.,in the bifurcation diagram of an impulse-shocked 

mechanical system [3] or a Josephson circuit [4]. In this 
paper, the coexistence phenomenon in a discrete-time 

nonlinear control system will be studied. 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
1 UTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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2. Coexistence phenomenon in the first order system 

2.1. System description 

Consider a simple nonlinear feedback control system, 

whose dynamical behavior is governed by 

x(n+1)=F(x(n»=ax(n)-f(x(n»+r, ( 1 ) 

where x£ R1, fIx) is a saturation element 

as shown in Fig.1 and is represented by 

f(x)=htanh2x, (2) 

and r is a constant input. 

flxl i 
-I x 

In the following, we write 

Fn (X)=F(Fn- 1 (x», n=1,2, ••• , 

and FO(x)=x. 

Fig.1 Nonlinear function 

By substituting (2) into (1), a one-

dimensional map of F(x(n» is obtained as 

shown in Fig.2. It is to be noted that this 

map is different from the map of logistic 

equation, that is, there exist two peaks in 

the minimum invariant interval. In the 

I"~ F(x) ./ 

-/-- ---- ----·7~-
I / 

,./ 

following it will be shown that the mapping Fig.2 Graph of F(x) 
curve as shown in Fig. 2 plays an important of (1) 

roll for the coexistence phenomenon. 

2.2. Coexistence of periodic points 

Two types of the coexistence phenomenon will be shown. 

One is the coexistence of different types of periodic points 

and the other is that of chaotic attractors. In this 

section the coexistence phenomenon of periodic points is 

shown. 

Let h=4, r=O.1 8. The bifurcation diagram of (1) for 

x(O)=O.8 is obtained by computer simulation as shown in 

Fig.3. If the initial value is changed, several modes of 

the coexistence phenomenon can be observed. In Fig.4 (a) it 

is shown that 3 periodic points occur catastrophically if 

x(O)=-O.74 and a=1.47. By checking the curve of F3 (x) at 

this point, it can be made clear that 3 periodic points 

occur by the saddle-node bifurcation. Although 2 periodic 
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points are still stable, the states are -attracted to stable 

3 periodic points. It is observed that 3 periodic points 

finally become chaos after the successive period· doubling 

bifurcation, and, after that, the state of the system 

returns back to the original 2 periodic points. Similarly 5 

and 7 periodic points also occur by the saddle-node 

bifurcation if the initial value and/or parameter value are 

changed as shown in Fig.4 (b)-(c). In these bifurcation 

diagrams, the initial value is changed in each computation 

step, that is, it is chosen as the state value of one 

computation step before, so that the coexisting states in 

the bifurcation diagram can be made clear. Comparing these 

simulation results with Fig.3, it is interesting that the 

bifurcation diagram depends upon the initial values. 

From these simulation results the following question 

arises: what are the necessary conditions for such 

coexistence phenomenon to occur? It can be considered as 

follows: 

1) Firstly it will be considered that at least two peaks 

must exist in the minimum invariant interval, so that the 

iterative map is complicated. Moreover, a map of (1) must be 

unsymmetric with respect to the origin , so that periodic 

points of odd number occur. It has already been shown that 

such coexistence phenomenon does not occur if there is only 

one peak in the minimum invariant interval [1]. 

x 

" 

-,,+---------------~---------------: 1 1.5 a 2 

Fig.) Bifurcation diagram of 
(1) for x(O)=O.8 
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x 0 -
-2 

(a) 3 periodic points to chaos 

x 

-2 

-4~~---r--r-~---r--r-~---r--r--' 
1.55 1.555 a 1.56 

(b) 5 periodic points to chaos 

x 
-2 1 ____ _ 

(c) 7 periodic points to chaos 

Fig.4 Several modes of the coexistence phenomenon 
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2) The second condition is that the neighborhood of 

the peak in a map of F(x(n)) must be differentiable. If k 

periodic points occur by the saddle-node bifurcation, it 

must be satisfied for this periodic points to be stable that 

I dFk(x(n)) /dx(n) I < 1 at points of contact with 45 0 slope 

line. This condition might be satisfied for a certain value 

of k and a , if a map of F(x(n)) is differentiable. If f(x) 

in (1) is piecewise linear function, a map of F(x(n)) will 

become pointed at these points of contact, and the above 

slope condition will not be satisfied. In fact the 

coexistence phenomenon of periodic points can not be 

observed in computer simulation in case of a piecewise 

linear saturation element. 
It is to be noted that, although the coexistence 

phenomenon of periodic points will not occur, the 

.coexistence phenomenon of chaos is possible to occur in case 

ofa piecewise linear function. 

2.3 Coexistence of chaos 

It can be considered that if the map of F(x) is symmetric 

and has two pointed peaks, the chaotic attractors will 

coexist. It will be checked by computer simulation. 

Now, consider the nonlinear system (1) where f (x) is a 

piecewise linear saturation element (slope h', break point 

±D). Let h'=8, D=0.5, and r=O. The bifurcation diagram for 

x(0)=0.5 and -0.5 are shown in Fig.5 (a) and (b) 

respectively. It will be clear that there exist two 

different chaotic attractors. 

."""'1411 

-----_ ... -.~.'. ",: 2 .. -----__ .. .i 

x 0 

-2 . _____ •. ____ .. '\ 
-2 --_._._-' 

-4.I-__ ~---_._----.---__, 
.9 a 1.1 

~l~----~----~~ ____ ~ ____ ~ 
.u " a '1.1 

Fig.5 Coexistence of chaotic attractors 
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The coexistence of chaotic attractors can also be 

observed in a first order pulse width modulated (PWM) 

control system as shown in Fig.G. The continuous-time error 

signal is converted to the pulse train by a sampling period 

T. The width of each pulse is not constant, but it depends 

upon the amplitude of the input signal as shown in Fig.7. 

Let r=O. Then the system behavior is governed by 

x (n+ 1 ) =F (x (n) ) , ( 4 ) 

where 

1 
gx+(g-l )/p x< -1 

gx+g(l_gx )/p -l~x~O 

F(x)= gx_g(l_g-x )/p o <x~ 1 

gx-(g-l )/p x> 1 , 

( 5 ) 

g=exp(pT), and p is a parameter of the linear element. 

For want of space the detailed results of analysis are 

omitted here [5] and the simulation results are only shown. 

r + ett) 

Fig.6 PWM control system 

e 

I , • • 

U)~D~hi , 
T l(e(kT» ~OW 

Fig.? Illustration of e(t) 
and u(t) 

The map of F(x) in this system for r=O is shown in Fig.8, 

which has also two peaks in the minimum invariant interval. 

Figure 9 shows a bifurcation diagram of this system. It is 

to be noted that there exist 4 chaotic attractors and to 

which attractors the system behavior is attracted depends 

not only the initial values but also upon the sampling 

period. 
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Fig.9 Coexistence of chaotic attractors in PWM system 
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3. Coexistence phenomenon in the 2nd order system 

113 

In the foregoing sections the coexistence phenomenon of 

periodic points and chaos in the first order system are 

discussed. In order to show the similar phenomenon in a 

second order system, a nonlinear sampled-data control system 

with the first order holder as shown in Fig.l0 is 

considered. 

The system equation is 

represented by 

x(t)=ax(t)+bu(t), 

y(t)=cx(t), (6) 

u(t)=H(r-f(y(t», 

:r: + 
T y 

Fig.l0 Sampled-data control system 

where x,y,u E Rl, 

and H(') is the output of the first order holder and 

is represented by 
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H{h(t))=h(nT)+[h(nT)-h«n-1)T)](t-nT)/T (7 ) 

nT~ t ~(n+1}T 

Now, demote h(nT)=h(n), and let r=O, c=1, f(y)=y3. Then 

(6) becomes 

where 

x(n+1 )=F(x(n}}, (8 ) 

, , 
x(n)=(x1(n), x2(n)), F(X)=(x2' #}, (':transpose) 

#=[-1/a-(1-exp(aT))/a2T] bx1 3 (n)+exp(aT}x2(n} 

+[(1-exp(aT))/a2T+(2-exp(aT))/a] bx23 (n). 

Now, let a=3, b=1, and the bifurcation of a fixed point 

is investigated by computer simulation as shown in Fig.11. 

If the initial values are changed, several modes of the 

coexistence phenomenon similar as Fig.4 are obtained as 

shown in Fig.12. Figure 12 (a) is an enlargement of a part 

of Fig.11, (b) and (c) show the occurrence of 6 and 8 

periodic points by the saddle-node bifurcation respectively. 

In order to make clear the coexisting states, the initial 

values are changed in each computing step. The more complex 

coexistence phenomenon can be seen in this system [6], while 

the occurrence mechanism of the coexistence phenomenon in 

the second order system has not been made clear. 
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4. Conclusion 

In this paper the coexistence phenomenon of periodic 

points and chaotic attractors in a discrete-time nonlinear 

control system is investigated. The coexistence phenomenon 

treated here is such that the coexisting periodic points or 

chaos do appear catastrophically in the bifurcation diagram. 

The bifurcation diagram of a simple first order discrete

time control system with saturation, a first order PWM 

control system, and a nonlinear sampled-data control system 

with the first order holder, are investigated and the 

several modes of the coexistence phenomenon are observed. 
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Experimental and Analytical Investigation of 
Nonlinear Coupled Oscillators under Random 
Excitation 

R. A. Ibrahim, Y. J. YOOII alld M. Evalls 

Wayne State University, 
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Detroit, Michigan 48202, U. S. A. 

Summary 

The nonlinear interaction of a two degree-of-Jreedom oscillator subjected to a wide band random excitation is 
investigated analytically and experimentally. The analytical investigation employs the F okker-Planck equation 
together with a non-Gaussian closure scheme. The solution predicts response statistics in terms of system 
parametets and excitation spectral density level. In the experimental study. tests are conductedfor long time 
intervals which are enough to reveal all possible dynamic characteristics of the system. The measured signals 
are processed to estimate response statistics such as mean squares. spectral densities. and probability density 
functions. The results show a qualitative agreement between predicted and measured response statistics. Both 
approaches give common features such as the autoparametric vibration absorbing effect. and nonstationarity in 
the coupled oscillator statistics. The measured probability density functions show a slight deviation from 
Gaussian curves. 

Analytical Approach 

Figure 1 shows a schematic diagram of the model which consists of the main system of mass M and stiffness 

K 1 provided by four lcaf springs each of length L. The main mass carries a cantilever beam of length i.c. and 

stiffness K2' The cantilever beam carries a mass m whose location can be adjusted to provide the desired value 

of the natural frequency of !he secondary system. In deriving the equations of motion. !he axial displacement in 

the clastic clements will be considered in the estimation of the system kinetic energy. Applying Lagrange's 

equation for the two generalized coordinates x and y. the equations of motion in nondimensional form arc: 

XIt + 2~IX' + X + e2(Xx·2 + X2XIt) - e(Llt,)R(y'2 + yylt) = Wit ('C) (la) 

ylt + 2~2rY' + r2y _ e(L{lc){WIt('C) + XIt}y + e2(L/£C)2(y'2 + yylt)y = 0 (lb) 

where 

2 Kl 2 K2 
X = x/Xo, y = y/Xo, r = 00210010 001 = (M + m)' 002 = m ' R = m/(M + m). 

Cl C2 
'C = mit, IJ. = 1 - R, e = 6XoI5L, ~1 = , ~2 = --, (2) 

2(M + m)ml 2mOl2 

Xo = ~ 1tSoI{2~lm~} , WIt('C) = UIt('C/ml )/Xom~ 

a prime denotes differentiation with respect to the dimensionless time 'to and Xo is a reference leng!h which is 

taken as the root mean square displacement of !he system in the abscnce of nonlinear coupling. 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
I UTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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Figure 1 Schematic diagram of the model 

It is seen that the ground acceleration W"(t) appears in equation (Ia) as a non-homogeneous tenn while it acts 

as a parametric term in equation (Ib) of the cantilever beam. The motion of the main mass also appears as a 

parametric excitation to the cantilever beam and since X" is an implicit function of time, the nonlinear term 

X--Y in equation (Ib) is referred to as an aUloparamelric coupling term. Another important feature in this 

particular model is that the linear portion of equations(Ia,b) represents uncoupled linear oscillators. In other 

words, the generalized and principal eoordinates arc the same. 

The ground motion acceleration is assumed to be a zero mean, stationary Gaussian process with a smooth spec

tral density So, up to some frequency limit 000' where 000 >><01. Its autocorrelation function is 

sin CO 't' 
Ru('t') = E[U"('t)U"('t + 't')] = 2Socoo( o} 

COo't' 

It follows that the autocorrelation function ofW"(t) is 

Rw('t') = E[W"('t)W"('t + 't')] = 2Socoo (sin O't')} 

X 2 4 O't' oC01 

2xSo sin O't' = 2Do('t') 

3X 2 x't' 
COl 0 

where D = xSJco~X~ and a () is the Dirac delta function. 

Equations (1) cannot be wriUen in the Markov vector form due to the presence of coupled nonlinear acceleration 

terms. However, these terms can be removed by successive elimination. In this case, one can write equations 

(1) in the form of the Ito stochastic differentials: 

. 1 4 4 dG .. (X 't) 4 
dXj('t) = (fj(X,'t) + -2L ~ Gkj(X,'t) 1J ' }d't + ~ Gjj(X,'t)dBi't) (3) 

k J dXk J 

through the coordinate transformation (XI,x2,X3,X4) = (X,Y,X',Y'j. 



www.manaraa.com

119 

In equation (3) the function f{X,t) is a vector whose elements fi are linear and nonlinear functions of the state 

coordinates X, G{X,t) is a 4x4 matrix whose elements are also linear and nonlinear, and the random process 

W'(t) is replaced by the time derivative of the Brownian motion process Bj(t). i. e. W'(t) = adB(t)/dt, where 

a2 =2D. 

The evolution of the joint probability density of the response coordinates p(X,t) can be described by the Fokker

Planck equation. In view of the system nonlinearity, it is not possible to solve the system Fokker-Planck equa

tion for the response probability density even for the stationary case. Instead, one may derive a general first 

order differential equation for the response dynamic moments by using the Fokker-Planck equation approach or 

the Ito stochastic calculus [1]. The resulting equation is found to constitute an infinite set of coupled momcnt 

equations which may be closed via one of the appropriate closure scheme. In reference [2] a Gaussian closure 

scheme was used and a set of fourteen differential equations in the f11'St and second order moments were solved 

numerically. In this paper, a f11'St order non-Gaussian closure is used by genemting moment equations up to 

fourth order and replacing fifth and sixth order moments in terms of lower order moments. This is done by set

ting the corresponding flfth and sixth order cumulants to zero. This procedure results in 69 f11'St order coupled 

differential equations which are solved numerically by using the DIVPRK (solution of an Initial Value Problem 

using Runge-Kutta-Verner fifth-order and sixth-order method, double precision) subroutine and by using 

DIVP AG (solution of an Initial Value Problem using an Adam-Moulton or Gear method, double precision) sub

routine of the IMSL package (International Mathematical and Slatistical Library). The two methods give the 

same steady state solution when the two modes are fully coupled. However, at the threshold of the autopam

metric intemction region (where the cantilever beam is about to oscillate) the DIVPRK subroutine experiences 

numerical instability while the Gear method yields numerical stability. 

The results shown in figure 2 show that the non-Gaussian closure solution exhibits less nonstationarity than the 

Gaussian solution and the two modes are intemcting in the form of energy exchange. In addition, the non

Gaussian response of the main mass fluctuates within the boundaries of the Gaussian solution, while for the 

cantilever beam, it is slightly higher than the Gaussian solution. The degree of nonstationarity depends on the 

damping mtios and the nonlinear coupling pammeter t. It is also found that the system achieves a complete 

stationary response for relatively higher damping mtios depending on the value of the nonlinear coupling 

pammeter, t. 

Figure 3 shows the variation of the mean square responses versus the internal detuning parameter r. In the 

neighborhood of r = 0.5 the energy is tmnsferred from the main mass to the cantilever beam which acts as a non

linear vibmtion absorber. The dependence of the mcan square responscs on the excitation spectral density level 

is shown in fig.4. This figure indicates that the solution remains stationary up to an excitation level (D/2~1 > 

0.6) above which the solution becomes nonstationary as indicted by the two bmnches. Currently, the authors 

are in the process of eslablishing a three dimensional diagmm showing the dependence of the different response 

regimes on the damping mtios, excilation spectml density, and internal deluning pammeter. 
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Experimental Investigation 

The experimental model emulales the analytical model shown in figure 1. A complete description of the model, 

arrangement of lest equipment, lest procedure, and data processing is given in reference [21. The early results 

reported in referenee [21 were found to include interaction with the shaker. In this paper, the instrumentation 

includes the use of a Scientific Atlanta SD1715 sine/random control system. This control unit is mainly used 

to generate a feedback signal to the shaker such that the shaker output signal maintains a constant spectral 

density level. Each experimental lest is allowed to run for 45 minules. This period is found to be sufficient for 
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Figure 4 Mean square response versus excitation spect .. ul density level 

the system to display all possible dynamic characteristics and to establish the system response stationarity. The 

response signals are processed to estimate the dependence of the mean square response on the excitation spectral 

density and to plot the probability dcnsity functions. 

The time history mean squares of the shaker, main mass, and cantilever beam are plotted in fig. 5. These are 

used 10 establish whether or the not the signal is stationary in the wide sense. It is seen that both the shaker and 

main mass signals are considered stationary after 540 seconds and 1080 seconds, respectively. The cantilever 

beam, on the other hand, exhibits small nuctuations indicating that the signal is nonstationary. The power 

spectral densities of the three signals are shown in fig. 6. It is seen that the observed dip in the power spectral 

density of the shaker signal, at the main mass natural frequency, reported in reference [2] has significantly been 

reduced in this plot since the vibration control is used. The shaker signal has almost nat spectral density while 

both thc main mass and cantilcver beam have narrow band spectral densities whose center frequencies correspond 

to the natural frequencies of the two modes. 

The dependence of the mean square responses upon the internal detuning ratio r is shown in figure 7. The plot

ted values are normalized by dividing the aciual mean square of the two modes by the unimodal mean square 

response of the main mass (measured when the tip mass is directly attachcd to the main mass such that no inter

action can take place). Each couple of points (one for the main mass, shown by the full circle, and one for the 

cantilever beam, shown by a triangle) are obtained for one internal detuning setting. When the test is repeated 

for the same internal detuning one obtains two different points as shown. For each test the shaker power spec

tral density is estimated and it is found that the two tests which are believed to be identical are actually conducted 

under different excitation power spcctral densities. This is the main reason for the observed scattering of the 

mcan square response versus r. Figure 8 shows the mean square responses versus the excitation power spectral 

dcnsity for r = 0.5. This figure establishes the threshold value at which the cantilever beam starts to oscillate. 

It is found that when the motion of the beam is fully developed the slope of the main mass mean square 



www.manaraa.com

122 

response with respect to the excitation spectral density level is reduced indicating a transfer of energy to the 

cantilever beam. However, the well known saturation phenomenon [3] reported in the deterministic theory of 

nonlinear vibration of systems with quadratic nonlinearity is not observed since the excitation is random and 

contains a wide range of excitation frequencies. Figure 7 provides qualitative agreement with the predicted 

results shown in figure 4 in that the cantilever beam acts as a nonlinear vibration absorber. 
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The probability density functions as estimalCd from the three signals are plotlCd by the histograms shown in 

figure 9. The degree of deviation of the response processes from normality can be inferred by plotting the 

corrcsponding Gaussian curves which are determined from the mean and variance of each process. It is seen that 

the main mass response is nearly Gaussian while the eantilever beam response has signifieant deviation from 

normality. The degree of deviation from normality depends on the excitation spcctral density and internal 

dCluning Paran1CICr. 

Conclusions 

The random response of a nonlinear coupled oscillator is examined analytically and experimentally. A non

Gaussian closure scheme is used to predict response statistics and the results are compared with thosc measured 

experimentally. The analytical and experimcntal results are in good qualitative agreement. Both results exhibit 

common features such as autoparan1ctric vibration absorbing effcct and nonstationarity in the responsc statistics. 

The experimental probability density functions of the system response show slight deviation from normality. 

Within the context of the present system. the Gaussian closure scheme may be regarded as sufficient to predict 

the responsc of systems with nonlinear inerlia coupling. 
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Summary 

We study the mechanical bouncing-ball system, which is a 
modification of the classical Fermi-Ulam problem. We calculate 
the basin structure and find that the basin boundaries are 
fractal curves. The observed multidimensionality is discussed 
in terms of the Smale-horseshoe dynamics generating the chaotic 
basic set. 

The mechanical bouncing ball system is a modification of the 
classical Fermi-Ulam problem [1,2]. In this modified set-up the 
ball is made to fly and impact dissipatively on a sinusoidally 
vibrating surface. A nice feature of the modified dynamics is 
that they are well feasible via mechanical experiments, which 
makes quite accurate tests possible [3,4]. The theoretical 
analysis is often based on the 2-dimensional dissipative 
standard map of Zaslavsky and Rachko (ZR) [2,3,5], which is the 
high-bounce approximation of the real dynamics. However, 

recently also the full equations of motion are adapted in the 
investigations [3,4,6]. The purpose of this paper is to inquire 

into the rich Fermi-Ulam dynamics by computing the basin 
structure using the full equations of motion. The basin is the 

catchment set asymptoting the attractor with time. The 

computation of basins [7] also facilitates the analysis of the 

appearance of the so called self-reanimating chaos [4] and the 
noise effects. Quite generally, the future evolution of a 

system starting from an initial condition depends significantly 

on the structures of the basins and their boundaries. 

In the equations of motion time and length are given in units 
11m and g/2m2, respectively, where 00 is the angular frequency of 

w. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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the sinusoidally vibrating surface and g the acceleration of 

gravity. ti is the time of the i'th surface-ball impact, Ti is 

the flight time, h is the surface's height, hi = h(t i ), vi is the 

ball's velocity after the i'th impact, H is the amplitude of the 

surface's vibration and K is the coefficient of restitution. 

Using the above definitions and Newton's 2nd law of motion and 

law of impact [8] the full equations of motion are found 

(1a) 

(lb) 

(lc) 

H cos ti (ld) 

The attractor is represented as (i,p) by giving the number of 

impacts i within the attractor period p. Note that p is given 

here in the units 21C/00. Hence, e.g., the ZR attractors (see 

below) are of the form (2n ,2na), where n = 0,1,2, ... denotes the 

bifurcation level (a = 1,2, ... ). Two types of exotic mute modes 

exist: if the ball sticks permanently to the surface the 

attractor is (00,0) (fully mute mode [4]) and if temporarily 

(chirping mode [4]) the attractor is (oo,n) (attractors at least 

up to n = 11 have been found [7]). 

When eqs. 1 are compared with ZR mapping [2] they are found to 

be the same provided that Ti = vi = a21C (a = 1,2, ... ). Under 

these conditions the only exactly physical attractors appearing 

in ZR mapping are those of the form (1, a) (ZR attractors) 

located at 

ti = 21C - arc sin (21Ca(I-K)/H/(I+K» (2) 

The other solutions at t~ = 31C-ti are unstable (see, e.g., fig. 

1 in ref. [5]). In this paper we utilize the full equations of 

motion (eqs. 1). 
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Fig. 1. (t, v) basins. (a) H = 0.6, the white denotes the (00,0) 
basin and the grey denotes the ZR (1,1) basin. (b) H = 2.3, the 
white denotes the (00,1) basin and the grey denotes the union of 
the ZR (2,2), (2,4), (1,3) and (1,4) basins. 

The dynamics are studied for K = 0.86, which is a typical value 

for steel sphere experiments [4]. We present in figs. 1-4 a few 

representative (t, v) basins (with blow-ups) at different H' s. 

The starting moment t = ti on the surface and the relative . 
starting velocity v = vi-hi with respect to the surface are 

chosen as the most natural initial conditions. Hence t and t+2~ 

are equivalent. In all basin plots the grid in (t,v) plane is 

200x26.0. White regions denote the basins of the attractors of 

the mute type (00,0) or (00,1) (in fig. 1b only) and the grey 

ones the union of the basins of ZR attractors (or their 

bifurcated attractors in fig. 1b). The black regions represent 

the basins of exotic attractors, such as (2,1) in figs. 2-4. The 

first ZR orbit (1,1) becomes stable at H = 0.473 (see eq. 2) and 

bifurcates to (2,2) at H = 2.065. The basins near these H's are 

presented in fig. 1. In fig. 1a the lone ZR attractor (1,1) is 

stable whereas the grey basin in fig. 1b is a union of·(2,2), 

(2,4), (1,3) and (1,4) basins of attraction. The basins of per

manent (00,0) and temporary (00,1) mute modes in figs. 1a and 1b, 
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t 2.58 ~---- 2.1(i"---~---ol 

Fig. 2. (t, v) basins at H = 1. 4. The white, grey and black 
denote the (00,0) basin, the union of the ZR (1,1) and (1,2) 
basins and the (2,1) basin, respectively. The magnified lower 
part of (a) is in (b), the magnified grey corner to the left of 
(b) is in (c) and the highly magnified grey-white boundary at 
the top of (c) is in (d). 
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Fig. 3. (t,v) basins at H = 1.5. The white, grey and black 
denote the (00,0) basin, the union of the ZR (1,1), (1,2) and 
(1,3) basins and the (2,1) basin, respectively. The magnified 
lower part of (a) is in (b), the magnified grey corner to the 
left of (b) is in (c) and the highly magnified grey-white 
boundary at the top of (c) is in (d). 
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Fig. 4. Magnified (t,v) basins at (a) H = 1.4, (b) H = 1.5. The 
white and black denote the (00,0) basin and the (2,1) basin, 
respectively. (a) and (b) are blow-ups of the black structures 
in the center of figs. 2b and 3b, respectively. 

respectively, decrease continuously when H is further increased. 

The change of stability (00,0)-1(00,1) occurs at H = 2.0. 

The basins of attractors (00,0), ZR and (2,1) are presented at H 

= 1.4 and 1.5 in figs. 2-4. In order to find out the structure 

of the basins and the quality of the basin boundary several 

magnifications are presented in figs. 2 and 3 : the magnified 

lower part of (a) is in (b) , the magnified grey corner to the 

left of (b) is in (c) and the highly magnified grey-white 

boundary at the top of (c) is in (d) . The basins are 

intertwined in a complicated way. It is evident that the black 

(2,1) basin is sandwiched between the white (00,0) basin and does 

not touch the grey ZR basin. No fractal basin boundaries are 

present for H = 1.4 in fig. 2. However, at H = 1.5 the black-

white boundary becomes fractal (fig. 3). This difference is 

even more clearly seen in figs. 4a and 4b in which the black 

structures in the center of figs. 2b and 3b, respectively, are 

magnified: the smooth and fractal boundaries, respectively, 
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are evident. At H = 1.5 the fractal black-white boundary exists 

simultaneously with the smooth grey-white boundary (fig. 3). 

This behaviour is attributed to the possibilities for multiple 

homoclinic and heteroclinic bifurcations [9,10] that occur 

independently at different parameter values and create a Smale

horseshoe-type chaotic basic set [10,11] corresponding to a 

fractal basin boundary. 
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The normal form theory is applied to free and forced nonlinear oscillators in order to find again 
some classical results obtained from others classical theories (averaging method ,multiple 
scales , ... ), and to obtain results about SNM, NNM, forced response of damped nonlinear 
mechanical systems and to build an extension of modal synthesis in the nonlinear case. 

Iotroductioo 

The idea of normal transform is due to H. Poincare [1] ; many authors brought it further 

successfully (Birkhoff [2], Arnold [3], Moser [4], ... ). It deals with finding a change in 

variables which transforms a system of analytical nonlinear ODE into a simpler one, 

sometimes a linear one. In references [5] and [6],Brjuno studies existence and stability of 

nornlal forms in the case of analytical forms of ODE. 

The order one normalization correspond to the diagonalisation of the lineary part, or the use of 

his Jordan form, if possible. The analysis of eigenvalues of the lineary part permits a first 

study of the behavior of the system: we have critical or non critical eigenvalues (Hsu [7], [8]). 

In order to analyze free vibrations of Hamiltonian systems, our method leads to the notion of 

non-linear modes. It pernlits an easy analysis of orbital stability: therefore normal transform 

was introduced, in agreement with Center Manifold Theorem[9]. So we can find again the 

results of bifurcation given by Month and Rand [10] in the case of a system possessing Similar 

Normal Modes. We find again from the normal form of the starting Hamiltonian system, a first 

integral:it is independant of the integral of energy H = h: so we can build a Poincare Map, and 

obtain NNM, and analyze their stability like in Month [11]. In the case of forced vibrations, 

we use an augmented system: so we show small parameters of bifurcation. We solve the 

problem of normalization of the non-linear system in the frame of Hopf bifurcation.In the case 

of several forced degrees of freedom system, we can bind the forced response to the non-linear 

modes obtained for free vibrations.In her works [12], W Szemplinska-Stupnicka emphasizes 

the interest of such a thing. She shows the difficulty of taking into account several non-linear 
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modes in the forced response. Our method permits to analyse the coupling level between 

non-linear modes. and permits a generalization of the modal superposition technique in the 

case of cubic non linearities. Though the method is a general one to describe the behaviour of 

dynamical systems with analytical non linearities. we use simple examples in order to display 

the main ideas. and to compare with classical results. By studying systems with cubic non 

linearities we can get the frame to enlarge modal synthesis methods. 

In a first part. we present the normal transform method. Then we study free vibrations of 

single and two dof. and compare with classical methods. Last. we apply the method to forced 

vibrations. We introduce detuning. We study two dof system with close frequencies in order 

to show coupling between non-linear modes. 

Normal Form Theory 

Let be a mechanical non-linear system (even not conservative) 

dX= AX +F2(X)+ ........... +FM(X) (1) 

dt 

with.X e ]Rn. F\J vectors gathering non linearities with components fjk polynomials of 

degree K = 2 ..... N with j = 1 ..... in X = (x 1 ..... xn) ; 0 (X N + 1) gathers the terms of order 

;:: N + 1 with appropriate change in variables. we transform non linearities from degree 2 up to 

an arbitrary degree K ~ N. The obtained system will be the normal form of order N of (1). Let 

us introduce P2 ..... Pk .... the spaces of polynomials of degree 2 ..... k ..... in n variables 

then we build the space lP'k = Pk q EEl ... EEl Pk en where (el ..... en) is the usual basis of 

]Rn.In order to normalize. we use a recurrence on the order of normalization. First. with a 

lineary change in variables. we write A in the form D + N. where D is a diagonal matrix. and 

N a nilpotent one (If possible A becomes a diagonal or a Jordan form matrix). Let be J the 

obtained matrix. Let be the normal system of order K < N written with the variable Xk of the 

step K: 

dXk=JXk+Q2(Xk)+ ... +Qk(Xk)+Fk+ 1,k(Xk)+ ... +FN .k(Xk)+O(XkN+ 1) 

dt 

(2) 

where JXk+Q2(Xk )+ ... +Qk(Xk) is the normal form of order K of (1). and Fk+l.k ..... FN.k 

are nonlinear of order;:: k in the variable Xk. Let be : 

Xk=Xk+l+Dk+l(Xk+l). Xk+l e lRn, Dk+l e PJ.+1 

After some calculation and right settlement of orders. we obtain: 

dXk+l= ':lDk+l(Xk+l)JXk+l-JDk+l (xk+l) 

dt 

(3) 

(4) 

=JXk+ 1 +Q2(Xk+ 1)+ .. ·+Qk(Xk+ 1)+Fk+ l,k+ 1 (Xk+ 1)+ .. ·+FN,k+ 1 (Xk+ 1) + O(XkN+ 1) (5) 

with Fk+ 1.k+ 1 (Xk+1)=Fk.k+ 1 (Xk+1).and Fj.k+ 1 (Xk+l) j>k+ 1 new non linearities of degree 

K+2 ..... N; Q2 .... Qk do not vary. oDk+l (Xk+1) is the Jacobian matrix ofD k+l.In the 

space lP'k+ 1 we obtain the basic equation: 

':)Dk+l(Xk+l)JXk+l-JDk+l(Xk+l) =Fk,k+l(Xk+l) (6) 

which can be written as a lineary system in the basis blk+ler, .... bdim(Pk+l)k+lel ..... 
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blk+1en, ... ,bdim(Pk+l)k+len ofPk+l, with blk+1, ... , bdim(Pk+l)k+l ordered basis of 

Pk+ 1· The kernel of the lineary system gives resonant non linearities of order k+ 1 of (1). 

Solving the lineary system on a complement of the kernel gives the normal transform Dk+ 1 ; it 

is determined except for an element of the kernel; we take it equal to zero. 

Free vibrations 

a)One degree offreedom system :We take as simple example,the undamped Duffing oscillator: 

!l2x +W12 x=cx3 (7) 

dl2 

We diagonalize and normalize unto order 5 and obtain a backbone curve identical to the one 

obtained from a classical analysis (averaging method) : 

B=-Wl+~x02 + ..Jk2 x04 (8) 

8wl 256 W1 3 

It is the same as in [11] [12] for small xo.We obtain the solution x of equation (5) of order 5 

with its flrst, third and fifth harmonic: 

x=(xO+ ..3..Lx03+...l5...k2 x05)cos(Bl)-u..x03+..5I;.2 x05)cos(3Bl) + .....J<2 _ x05 cos(5Bl) (9) 

16W12 512W14 32W12 32W14 I024WI4 

A comparison with results obtained by perturbation method or multiple scales gives a 

difference only from order 5 [12],[13] . 

b )Systems with n degrees of freedom: let be the following system without damping: 

!l2xj+ Wj2 Xj = F2j(X)+ •...• +FMj(X). j=l •.•.• n (10) 

dl2 

with F~(X) homogeneous polynomials in X = (xl, ... ,xn) of degree 2, ... , M. Starting from 

the normal form of equation (8) : 

.IIll=DU+Q2(U)+ .. ·+QK(U) .U=(u 1 ..... u2n) 

<It 

with D diagonal matrix of -iwj. iwj , we look for periodic solutions of equation (10). 

(11) 

i) Case without internal resonance: the Wj are incommensurable on the whole. A decoupling 

appears between equations (13) take two by two (we have n couples of conjugate equations) 

U2j-l, u2jo j=I, ... , n, when we switch off the 2n-2 other components 2n-2 equations are 

obviously verified. The two last equations: 

W2j-l =-iw jU2j-l +Q22j-1( 0 .... 0.U2j_l.U2j.0 •••• 0)+ .. +QK2j-1 (0 .... 0.U2j_l.U2jo0 .... O) 

dl (12) 

W2j =iWjU2j+Q22j(0 .... 0.U2j_l.U2j.0 •..• O)+ •. +QK2j (0 ••.• 0. U2j-l. U2j.0 •..• 0) 

<It 

give the j th mode where Otl, k=2 to K, 1=1 to 2n. are the components of the Qk : 
X1=U21-1 +U21+ TK21-1(0 •.•• 0.U2j_l.U2j.0 •..• 0)+ TK21(0 ••.• 0.U2j_l.U2j.0 ••.• 0).1=1 to n (13) 

U2j_l=UOj exp(iBjjl). U2j =uOj exp(-iBjjl). uOj .hjj reals. u2k-l=u2k=O ifk*j (14) 

Tkm (V) are the normal transform (the sum of the transform of degree 2, ... , K dissociated to 
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the mth component). The fixation to zero of 2n-2 components in equation (13) correspond to 

the building of a kind of Poincare Map in V-coordinates. A fixed point correspond to a 

periodic solution of equation (11) which is a non-linear mode because of its building. 

ii) Case with internal resonance: here, we can find in the couple of equations (2j-l, 2j) of the 

equation (12) some non-linear resonant terms without U2j- 10 u2j-The same thing may appear 

in the others equations. Then if we lock the 2n-2 coordinates of V except U2j- 10 U2j at zero, we 

can not verify some of the equations where all the terms are zero except some resonant terms 

like U2j_lk U2j K-k .We cannot decouple as we do in i). We must write equation (14) for all 

the coordinates and solve algebraic system of equations to define non-linear modes. 

iii) Example: n=2, let us consider the non-linear system with cubic non linearities : 

~2x + w 12 x = -k xL (x_y)3 

dl2 (15) 

~2y + W22 Y = -k y3 _(y_x)3 

dl2 

For 00 liW2 irrationnal, we obtain the first non-linear mode: 

x = ul+u2+ ...!>±Lu13 _ .l(WLu12u2 -.lCk±ll. UIU22 + ....k±.Lu23 

8Wl2 4Wl2 4Wl2 8 Wl 2 (16) 

y= Ul 3 +~UI2u2 +~UIU22 + 1 U23 

W22 -9W12 W22 -W12 W22 -W12 W22 -9W 12 

ul=uIOexp(-i(WI+.lCk±lluIOu2<10 , U2=U20exP( i(Wl+.lCk±lluIOu2<10 , UIO, U20 reals (17) 

2w 1 2w 1 

We consider the case 00 1 =002 =1.We have the normalized system without conjugate equations: 

~ul = -iul- ...L(3(k+l)ul 2u2 +6ulu3u4 -6ulu2u3 -3UI2U4+ 3U32U2 -3U32u4) 

dt 2 (18) 

~u3 = iU3 -.i(3(k+l)U32u4+6uIU2 U3 -6ulu3u4 +3UI2U4- 3u32u2 -3UI2UV 

dt 2 

let be u3 =Cu 10 u4 =CU2 in equation (18) : we find again the SNMof [9] : C verifies 

c4 + (k-2) C3 - (k-2) C -1 = 0. (19) 

In such an example, we find a first integral independant from H=h, where H is the 

Hamiltonian of equation (15), by integrating the PDE : 

~ul=-...L~ ,~u2 =...L...aR,~u3 =-...L...aR,~u4 =...L.2YL (20) 

dt iWl aU2 dt iWl aUl dt iWl aU4 dt iWl aU3 

Let be W=W(2) + W(4) with W(2) and W(4) homogeneous polynomial of degree 2 and 4. 

Some calculations lead to W(4) =constant. It is a fust integral. With H=h, W(4) = constant, 

we could build a Poincare map and analyze the stability of nonlinear normal modes. 

Forced vibrations of one dof system : we consider the following simple example: 

~2x+a~x+wI2 X= cx3 +fcos(wO 

dt2 dt 

(21) 
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We use a detuning parameter round eigenvalue -iw , and we normalize in order to obtain the 

exact solution of equation (23) in the linear case; we introduce some parameters: 

0:=).1+iw;>'1=O.5(-a-ir1);>'2=0.5(-a+iq);r12=4W12-a2;g =-L_1_; A=A; B=...i (22) 

8w W 1 1 + .1L 2w 4 W 1 

2iw 

with i2 =-1 , a: and a: conjugate; if we suppose after normalization that near primary 

resonance uo is of order 1 and f of order 2 (With the method of multiple scales we should 

have decided it at the beginning) we obtain a frequency-amplitude equation of order 3 : 

uo+ :af+ 3A DO u02-6gA f DOUO-3A T)uo2f +0(5) = 0 (23) 

0: 0: 0: 

and with the normal transform, we obtain the first harmonic of the displacement: 

X=U 1 +u2+gf 1 + T) f2-~( u 1 +uv u 1 u2 with u 1 =uOexp( -iWl),u2= DOexp(iwl) (24) 

2w 

The validity of our method is bound to the convergence of the formal series in the change of 

variables (Brjuno [5],[6]).We work in the neighbourhood of zero: we never exceed 12uokO.8. 

We could analyze the stability by the normal form of equation (21). So we obtain the classical 

skeleton curve. 

Forced vibrations of a two dof oscillator 

For example, we consider the following example without damping coupling: 

l.!.2x +a1@.+w12 x=-ax3-b(x-y)3+F1COS(Wl) 

dl2 dl (25) 

!J.2y + a2 dY. + W22 Y = -a y3 -b(y-x)3 +F2cos(Wl) 

dl2 dl 

i)First we introduce a detUfling round -ilLI and a detuning round -ilfJ2 :we suppose W near wI 

and W far from w2.We introduce some parameters which permit us to normalize equation (25): 

>'1= .:il1-i q ;>'2= .:il1+i r1 ;(q)2=4W12-a12;>'3= .:il:z:ll2 ;>'4= .:il2±ll2 ;(rv2=4W22-a22; 

2 2 2 2 

0: 1=).1 +iW,0:2=).3+iw2.(F2/F 1)=r;f1 =F 1 exp(-iWt):f2=rF 1 exp(iWt);f=F 1; (26) 

g = 1 1 ; S= -I.lIL2 __ 

4w q 1 +~1- r2 (W22_w2) 

2iw 

These parameters bring out an exact solution of equations (25) in the linear case;they lead to 

the following expression of the displacements x and y of the first nonlinear mode: 

x=( u1+u2+gf1+T)f2 -.3!a±bl( u1+uvu1u2) + Uttbl( U13+U23) 

4w 1 8w 1 W (27) 

y=(S(f1+f2)+ 3h (ul+u2)u1u2)+ b (U13+U23) 

2W2(W22_W2) 2w2(w22_9w2) 

where ul=uoexp(-iWt),u2=iJland u3,u4 have been neglected: u3=hoexp(-iw2t) ,U4=iJ3 and 

uO, hO verify the two following frequency-amplitude equations of formal order 3: 
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0: 111()+ if +.i.( -3(a+b )1I()2Uo-3(al]-b(S-11»1I()2f-6(ag-b(S-g)uOUOf 

2q 2Wl 

-6(agll+b(S-g)(S-I]»uOf2 -3(ag2+b(S-g)2)Uor2 -3(ag21]+b(S-g)2(S-I]»f3 ) =0 

(W2-W)hO-ia2ho=!erms with luOl2hO ,uOhOf'UOhOf,lhOI2hO,hOf2 

(28) 

(29) 

So with some reasonable hypothesis near resonance ( uO of order 1,f of order >l),with W 

close to wI and far from w2 , a general solution hO of equation (29) is of order 4 at least. So 

we can decouple equation (25) in normal coordinates and write u3=u4=0 to obtain the ftrst 

mode. 

ii)We suppose ((.I near ((.II and (,12: we introduce a double detuning round iw with expressions 

similar to those of i) .In order to build a modal synthesis with nonlinear modes, we introduce: 

gl- 1 1. g2- 1 1 (30) 

4wq 1 + ~1-

2iw 

1+~2_ 

2iw 

Uo = uO +glF l>VO = vo +g2F2. xo =2Uo (31) 

We obtain 2 equations where we neglect the terms of order;;:: 5 like UOV02 ; so they are 

uncoupled: 

Fl =2811 Uo+ 3(a+b)IUoI2Uo(1 +2!.Il)+3(a+b)2a 1IUOI2UO-3b(1 +2!.Il)(U02+2IUOI2)g2F2 

r1 q q (32) 

F2=2812 Vo+3(a+b)IVoI2Vo(1 +2!.Il)+3(a+b)2a2IVoI2Vo-3b(1 +2!.Il)(V02+2IVOI2)gl F 1 

r2 r2 r2 

with oIl =(W12-w2-ia1 w) ;012=(W22-w2-ia2W) ;we get back the complete displacement x for 

example: 

x=xo- 3ill±hllxOI2xO+lllCI]2 - wi )x02F2+....Jb. L.g2_- 2b wi )lx012F2 (33) 

16wq 4r12w (W2-W)(W2-3W)20:2r2 4 r1 W 0:2r2 (W2_W22) 

With equations 31,32,33 and similar equations, we write: 

x T1 t T( F1 T2t T2' F1 

~+ ~ ~ 
y 

where m1 , 011 are equal to : 

fi1 = 1 + ..3!ll±!ll.X02Uu1~ + ill1) 

4 2w 1 fI 

811 = W 12-w2-ia 1 W + 3Catb) 1Xol2 with Xo = 2UO 

4 

and similar terms for m2 D12 and: 

(35) 

(36) 

tT1=(1-~X02. 3b IXOI2).tT2=(l-~Y02. 3a 1Y012) 

8w 12 4(W22_W 12) 8W22 4(w 12_(22) 

(37) 

t T(=(l -lU.I±:hl.-X02 , 9b X02 ).t T2'= (1 -lU.I±:hl.-Y02 • 9ba Y02) 

8W12 4W2(W2+W) 8W22 4W1(W1+W) 
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Keeping with these results W. Szemplinska-Stupnicka [12] writes forced near-resonance 

responses is close to the corresponding nonlinear mode .But she can not describe the part of 

the other modes.From equation 33 t we can justify the superposition of nonlinear modes up to 

fourth order in the case of cubic nonlinearities .We note that reciprocity is not verified: Tl' is 

different from T1.The gap grows when the resonance frequencies of linear modes are close. 

We show the comparison between numerical results and our synthesized response in figure 1. 

Norm81 Form 

Runge-Kutta method 

0.25 

I. 1.5 

0),=1.2; 0)2=1.5 ; F,=0.015 ;F2=0.03 ; D=O.OI ; b=1.00; 

Normal Fo 

0.25 

Runge-KuttD method 

I. 1.5 

Fig. 1 

Amplitude of x and y versus w by synthesized 

normal form response. and Runge Kutta method 
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Summary 

In mechanical systems nonlinear effects due to stick slip and backlash are often observed. 
If such systems are harmonically driven, then besides well known bifurcation phenomena 
also sudden changes of the chaotic dynamics occur. These types of qualitative change 
of system's behavior, the so-called crises, result from a collision between an unstable 
periodic orbit and a chaotic attractor. Different crises phenomena are discussed and it 
is demonstrated how the occurrence of crises can be determined numerically. 

1 Introduction 

Technical dynamical systems contain in general quite a number of nonlinearities. Besides 
the real nonlinear character of springs and dampers, also stick slip effects and backlash 
between mechanical parts are important. A detailed knowledge of the dynamics due to 
the aforementioned nonlinearities could help the engineers to avoid instabilities of an 
evolving dynamical system in which parameters are varying slowly with time. 

As a representative example we study the dynamics of a simple one degree of freedom 
oscillator with backlash, which includes all relevant parameters, i.e. stiffness, clearance, 
damping, and forcing. Under variation of these parameters different kinds of qualitative 
dynamic behaviour is observed. The qualitative change in the behaviour of the system, 
i.e. bifurcation, is generally related to the occurrence of a critical case. 

Besides well known bifurcation phenomena we focus our attention to sudden unex
pected changes of the chaotic dynamics. Veda [1] was the first to describe by Dulling's 
equation the explosion of chaotic attractors, Grebogi et. al. [2] analyzed these phenom
ena and introduced the term crises. They showed that a crisis results from a collision 
between an unstable periodic orbit and a chaotic attractor. We distinguish two types of 
crises phenomena, the interior crisis and the boundary crisis. The sudden blow up but 
finite enlargement of a chaotic attractor is called interior crisis, while the boundary crisis 
causes the chaotic attractor and its basin of attraction to disappear. The latter happens 
if the unstable solution is part of the boundary of the basin of attraction. The crises 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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phenomena are also called catastrophic or discontinuous bifurcations, e.g. Thompson 
and Stewart [3]. 

2 Model Description 

The system under investigation is an oscillator with piecewise linear characteristic and 
harmonic forcing, Figure 1. 

Figure 1: Model of the system and characteristic of the nonlinearity 

Its normalized governing differential equation is 

x + 2d:i; + k(x) = a coswt 

with 

{ 
f(x - e), 

k(x) = 0, 
f(x + e), 

The parameters of the system are: 

damping coefficient 
clearance 
stiffness ratio 
amplitude of excitation 
frequency of excitation 

x> e, 

I x I:S e, 
x < -c. 

d= 0.15, 
e= 1.0, 
f= 3.0 - 17.0, 
a= 10.0, 
w= 1.0. 

(1) 

(2) 

This simple model of a system with backlash shows the whole scenario of nonlinear 
behaviour like periodic, solutions of multiple period, and chaotic solutions, various types 



www.manaraa.com

143 

of bifurcations and coexistence of even qualitative different solutions. All results pre
sented are computed numerically by means of a piecewise analytical integration scheme, 
for more detail see [4]. 

Instead of looking at trajectories in the time domain, we use the so-called Poincare 
map 

(3) 

where Yi = (x, xf is the state of the system at t = 21rwi. Hence, a solution with period 
n of the continuous system (1), called P - n solution, corresponds to a set of n fixpoints 
j); with periodicity n of the discrete system (3), 

(4) 

and 
(5) 

In general, the nonlinear map (3) cannot be given in an analytical form, it has to be 
calculated numerically. 

A thorough investigation of bifurcation problems requires not only the knowledge of 
stable solutions and their basins of attraction, but the location of unstable fixpoints as 
well. 

An efficient method for the determination of attractors, both regular and chaotic, and 
their basins of attraction is the cell mapping approach, developed by I-Isu [5], see also 
[6]. This method is based upon a discretization of the state space into a large collection 
of small cells. The cells are obtained from a normally rectangular grid. All grid points 
are mapped according to (3). From this set of data the long-time behaviour for each 
cell is calculated, yielding a good approximation for the original system, as long as the 
grid is not to coarse. An important feature of this approach is that it is tailored for 
todays vector processors or tomorrows parallel computers, since it is straightforward to 
vectorize or parallelize. 

For the calculation of fixpoints, equation (5) is written in another form, 

gn(Yi ) - Yi = 0, i = 1, ... ,n. (6) 

I-Isu and Zhu [7] presented a method to locate zeros of a nonlinear function in a discretized 
state space, which is used to compute the periodic solutions Y , regardless their stability. 
This method has a close relation to the cell mapping approach, and it is possible to use 
the aforementioned map of a grid as well. 

With these numerical tools the analysis of the nonlinear system (1) was taken out. 
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3 Bifurcations and Crises 

A useful method to demonstrate the influence of parameters on the steady-state be
haviour of nonlinear systems is the calculation of bifurcation diagrams, from which the 
parameter values for different regular or chaotic solutions can be determined easily. A 
well known phenomenon thereby is the occurence of windows with periodic solutions 
within a chaotic range. 

In Figure 2 a small portion from the bifurcation diagram of system (1) is shown. 
Included in this diagram is a P-3 solution together with its unstable parts that emerge 
from a saddle-node or tangent bifurcation at f ~ 8.22. 

6. 
X 
5. 

4. 

3. 

2. 

l. 

o. 

-l. 

-2. 

-3. 
8.0 8.2 

"ddl~nod, J 
bifurcation 

8.4 

I 
boundary 
CriSIS 

8.6 8.8 

pitchfork 
bifurcation 

I I 
9.0 9.2 f 9.4 

flip ~intedm 
bifurcation crises 

Figure 2: Bifurcation diagram with coexisting solutions. The dashed curves denote the 
unstable P -3 solution created at the saddle-node bifurcation. 
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3.1 Boundary Crisis 

The sudden death of the chaotic attractor at f ~ 8.4 is caused by a boundary crisis. 
From the saddle-node bifurcation at f ~ 8.22 originates a stable as well as an unstable 
P-3 solution. This unstable solution is of saddle type, its stable manifold is the boundary 
of the domain of attraction of the chaotic attractor. 

8.23 
6~--~-=------~ Boundary Crisis 

o 5 

Figure 3: Coexisting periodic and chaotic solutions with their basins of attraction; the 
symbol Ii denotes P - 3 saddle-points. 

In Figure 3 the basins of attraction of the chaotic and the regular solutions are plotted 
for different values of f. The pictures show that 

1. the chaotic attractor approaches the P -3 saddle points, 

2. the domain of attraction of the periodic solution grows toward the strange attractor 
in form of needles, 

and the boundary crisis is triggered when the stable manifold of the saddle touches 
the unstable manifold. This causes the basin of attraction of the chaotic solution to 
disappear and the attractor itself ceases to exist after a short period of time, called 
chaotic transient. Solely the P-3 solution survives. 
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3.2 Interior Crisis I 

Following the periodic solution in Figure 2, we observe a pitchfork bifurcation at f = 8.74. 
Further increase of f causes a sequence of flip bifurcations and finally a chaotic attractor 
is formed, consisting of three pieces. A sudden but finite enlargement of these three 
parts is observed at f = 9.03. In Figure 4 the bifurcation diagrams of the two coexisting 
stable P - 3 solutions, emerging from the pitchfork bifurcation, are plotted together. 

6. 
xp 

5. 

4. 

3. 

2. 

1. 

O. 

-1. 

-2. 

-3. 
8.6 8.7 8.8 8.9 9.0 .. 9.1 

F 

9.0 .. 8.9 8.8 8.7 8.6 

Figure 4: Bifurcation diagram of the coexisting solutions. P - 3 saddle-points:- ---

Again, the P -3 solutions of saddle type are the connecting link. Together with the 
creation of the new coexisting solutions, the former stable solution becomes unstable 
at the pitchfork bifurcation. The coexistence disappeares when this unstable solution 
touches the chaotic attractors. Or from another point of view: the interior crisis oc
curs when the two chaotic attractors touch each other and merge into one three-piece 
attractor. 

An important aspect in understanding crises is, that the unstable solution evolving 
together with the coexistence destroys this coexistence later on. 
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3.3 Interior Crisis II 

Further development in Figure 2 reveales a sudden change of the solution for a value 
f = 9.17. The three-piece chaotic attractor blows up to a large chaotic attractor. Figure 
5 shows the formerly empty regions between the three parts getting filled and a fully 
developed irregular behavior after this interior crisis. 

3 3 

0 ~. 
) '. . 

! "':-'" 

o 

-3 
2 3 5 0 2 5 

_3L-__ -L ____ ~ __ ~ ____ ~ __ ~ 

o 

f = 9.15 f = 9.19 

Figure 5: Poincare map before and after the interior crisis II, P - 3 saddle-points: ~ 

As before, the interior crisis is caused by the collision of the P - 3 chaotic attractor 
with the unstable P-3 solution. The unstable P-3 solution which caused already the 
boundary crisis is also the source of this crisis. 

The qualitative behaviour of the system before the boundary crisis and after the 
interior crisis II is the same. That is, when a new solution is created, the cause for a 
later destruction of this solution is generated too. 

4 Conclusions 

vVe demonstrated the use of numerical tools based on the Poincare map to achieve a 
detailed insight into nonlinear dynamics. The calculation of coexisting stable solutions 
und their domains of attraction was done with the cell mapping approach. 

Furthermore, it was necessary to compute unstable periodic solutions in order to 
understand and predict the occurence of crises. A numerical algorithm, based on finding 
zeros in a discrete state space, was used to compute fixpoints with arbitrary stability 
and multiple period. All calculations were carried out for the example of a harmonically 
driven oscillator with backlash using an analytical integration scheme. 
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In addition to well known bifurcations of regular solutions, sudden changes of the 
chaotic behaviour, called crises, are often observed. The main key for understanding 
these crises are unstable periodic solutions. Two different types can be destinguished, 
boundary and interior crises. 

The contact of a chaotic attractor with an unstable periodic solution that is part of 
the basin boundary, is called boundary crisis and destroys the chaotic attractor together 
with its domain of attraction. Interior crises are sudden but finite blow-ups of a chaotic 
attractor. These are caused by the collision of the attractor with an unstable solution 
that does not lie on the boundary of the domain of attraction. 

The relation between the various bifurcations should be emphasized, since following 
universal scenario was observed. A new, coexisting solution evolves from a bifurcation 
together with an unstable one. Later on, this unstable branch destroys the new solution 
by a crisis and reestablishes a behaviour qualitatively equivalent to the original one 
before the bifurcation. 

This scenario is one explanation for the occurrence of windows of periodic solutions 
within the chaotic range in bifurcation diagrams. 
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Summary 

The large displacement and time response of a two-degree-of freedom,dis
sipative, nonlinear cantilever-model under a partial follower load is di
scussed by using a complete nonlinear dynamic analysis. Considering the 
stability of motion in the large, in the sense of Lagrange,the mechanism 
of dynamic instability is thoroughly reexamined for perfect or imperfect 
systems. New findings for the stability of critical states contradict e
xisting results based on linearized analyses. Critical states of diverge
nce or of nonexistence of adjacent equilibrium may be stable or unstable 
depending on the amount of material non1inearity.The nonlinear static bu
ckling loads coincide with the corresponding dynamic ones when there is 
no precritical deformation; otherwise the latter loads are always less 
than the former.It was also found that systems statically stable may be 
proven unstable when a nonlinear dynamic analysis is employed. C10ba1 bi
furcations have revealed that this autonomous system even when damping is 
excluded may exhibit phenomf:na looking like chaos. 

Introduction 
The loss of stability of nonconservative systems under follower forces 
may happen either by flutter or by divergence depending on the values of 
the parameter involved l- 7.The critical divergence load can be determined 
by using either a static or a dynamic analysis. Necessary and sufficient 
conditions for the existence of regions of divergence instability have be
en also established7• However,the above findings and studies refer to li
near nonconservative systems losing their stability without precritical de
formation.Recent1y,it was shown8 that the inclusion of material nonlineari
ty in a nonconservative imperfect system may extend the region of divergen
ce instabi1ity.A thorough study for the postbuck1ing response of nonlinear 
nonconservative systems with or without precritical deformation has been 
presented by Plaut9• 
The reliability of the aforementioned nonlinear stability analyses has not 
as yet been confirmed with the aid of an exact nonlinear dynamic analysis. 

w. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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Hence.the validity of existing findings based on linearized or approximate 
dynamic analyses10 ,11 is questionable. Recently some interesting nonlinear dy
namic analyses by Huseyin and his associates 12 ,13 are based on local soluti
ons such as higher perturbation schemes and averaging techniques. 
In this investigation,considering the stability of motion in the large in the 
sense of Lagrange, the dynamic instabi 1 ity is defi ned as the long-term state 
for which an unbounded(divergent. )motion is initiated (leading to overflow. )'. 
Then the corresponding dynamic buckling load is defined as the smallest load 
for which an unbounded motion occurs. The results presented herein are based 
on global solutions of the original nonlinear equations of motion including 
also linear viscous damping. Such global solutions allow us to explore also 
strange attractor (or chaotic) phenomena~4,15,16 

Statement of the problem 

Consider the two-degree-of freedom,partially fixed,cantilever model shown in 
Fig.1, composed of two weightless rigid bars of equal length ~ interconnected 
to each other by a rotational spring.The model carries two concentrated mas
ses m1=2m and m2=m at Band C,respectively.The deformed configuration is spe
cified by the angles 31 and 32 between the vertical and each of the bar axis, 
while the unrestrained configuration is identified by the initial angle impe
rfections 31=€1 and 32=€2. 

(a) (b) 

Fig.1.Unstressed(a)and stressed(b)state of a two-mass cantilever-model 

The system is subjected to a partial follower tip load P acting at an an
gle n32 with respect to the upper bar,where n is the nonconservativeness 
loading parameter. The restoring moments developed at Band C are given by 
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(1) 

where k is the linear dimensionless spring component,whereas 0i(i=1,2)and y 
are the nonlinear dimensionless spring components.In addition to geometric 
and material nonlinearities a precise modeling should also include damping. 

The effect of linear viscous damping can be included by adding to the mome
nts MB and Mc the terms C2(32-51)and c131,respectively. 
Lagrange)s equations of motion for the above nonconservative autonomous di-

" t" 16 sSlpa lye system are 

where 

1 -2 1 2['2 -2 - . ] K=z- m1W1 +2 m2l'. 01 +02+20102COS (°1-52) 

V= ~ = ~(0 -~ )2+ ~ (O _~ )3+ 1-y (0 _~ )4+ ~(0 _~ _ 
k 2113111411222 

4 1 2 1 4 
-01+~1) + ~2(02-~2-01-~1) + --Y(~2-~2-01+~1) 

3 4 
1 • 2 1 ., 2 

F= -'-C 10 1+ -- C2(01-52) 
2 2 

Q,=psin[01+(11-1)02], Q2=psin ll32 with p=Pl'./k 

After introducing the dimensionless quantities 

1/2 
~(1:)=0(t), 1:=t(k/m29Z) 

equation (3) become 
(i=1,2) 

.. .. '2 * * . *. 
(l+m)e1+82cos(el -62)+8 sin(el-62)+(c1+c2)81-c282+2(el-~1) -

2 
232 

-(e2-~2)+o1(81-~1) +Y(81-~1) -o2(81-~1-e2+~2) +y(el-~1-82+ 
3 - -

+~2) -psinle1+(11-1)e2J=o 

.. -. ·2 *. *-
e2+81coS(81-e2)-81sin(81-e2)+c282-C281-(e1-~1)+(82-~2)+ 

(2) 

(3) 

+52 (81-~1-e2 +~2) 2 _y (81-~1-e2+~2) 3 -ps i n1182=0 (4) 
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Setting 81=82=81=82=0 into eqs(4) we obtain the nonlinear equilibrium eqs 
giver?by Plaut (1976).If i51=i52=y=0 the system is made of linearly elastic ma
terial(Hookean model);that is its stiffness is linear .In this case eqs (4) 
after 1 inearization and setting m=2,1l =l-a coincide with those presented by 
Herrmann and Bungay2.Such a linearization consists of adopting the followi
ng approximations 

cos (91-92)=1, sin [91 + (n-1 )62J= 9 1 + (n-1) 9 2, s inne2~2 

.2 . ( ) -0 .... 2 . ( )-9 1s1n 9 1-92 = , 02s1n 9 1-92 =0 (5) 

As will be shown subsequently these terms and particularly the last two on
es govern the mechanism of the long-term behavior of the system;although 
the latter look like damping terms one can show with the aid of the Lie de
rivative that they do not lead to contraction(as an attractor does). 

Perfect system(E1=E2=O) 
The divergence buckling load pc in case of no precritical deformation(sta
tic bifur'cational system) can be determined by using a classical lineari
zed either static or dynamic analysis.Such a load,being independent of the 
values of m,y,i51 and i52,is given by 

pC= -1(3~V9- 4 ') (n~4/9,n<O) 
2 n 

(6) 

If y=O but i51and 152 are not both zero(quadratic model)the loss of static 
stability occurs through an asymmetric branching point, while if 15 1=152= 0 
but y~ O(cubic model) the system is associated with a symmetric branching 
point,whose stability depends on the value of v. Indeed, for the last case 
after a cumbersome manipulation (since the partial differentiation 
commutative) the following stability condition is obtained 

yf1+f2>O 

f =6pc+18(1-pc) 1 _ 1 + 1", with [ 
1 1-npc (1_npC)2 3(1-npc)3 J 

f2=pC[1+ 3(n-l) + 3(n-1)2 + (n_1)3+n3(2_pc) 1 
l-npC (1-npc)2 (1_npC)3 J 

is not 

(7) 

where if n=O.50 we must have pC~2 since otherwise both f1 and f2 are unde
fined. 
For a Hookean material (y=i51=i5 2=O)it follows f 2>O regardless of the values 
of pCand n; that is all divergence critical states are stable for the enti
re range of variation of n except the small interval O.451<n<O.50 correspon-
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ding to the 2nd buckling load pC=0.5(3+V9=4~)~hese results can be verified 
with the aid of a nonlinear dynamic analysis.Indeed, for any initial angular 
velocities 8i fO (i=1,2) the trivial critical states (81=82=0) are stable sin~ 
ce the resulting motion for p=pc is of bounded amplitude as t+ 00 .Such a fin

ding contradicts existing results presented first by Herrmann and Bungay2 and 

widely accepted later on by many other researchers3.This is basically due to 

the neglect of the last two terms in relation (5). 
From Fig.2 one can see the variation of the divergence buckling load pC( or 

1st 'Buckling load 
11 
I 

Hookean material;y=51=52=O 
perfect system: &1=&2=0 

S TAB I LIT Y 

I N THE L A R G E 

S TAB I LIT Y 

a=l-T) 

Fig.2.Stable divergence critical states in the plot Pcr vs a 

pcr)versus the nonconservativeness parameter a=l-n for a Hookean perfect sy
stem.Note that if a<0.50 the trivial state (91=92=0) is unstable for p>pc. For 
loads suffiently higher than the critical load we may have chaotic transien
ts.When a<Oo50 the model exhibits two stable postbuckling paths(one correspo
nding to the 1st branching point and another corresponding to the 2nd branc

hing point).This is clearly shown in Fig.3 which illustrates the postbuckli
ng paths for six characteristic cases of a.For 0.50 <a<o/9 there is only one 
postbuckling path connecting the two branching points. For O.50<a<0.549 the 
model displays a limit point (above both branching points). When n=0.50 and 
pC=2 the non~issipative model exhibits a chaotic regime (with large displa

cements) which is not due to a strange attractor since there is no contra

ction of phase-space volumes. For a=5/9 we have an isolated stable equili

brium point. For sufficiently negative V depending on the value of n(=l-a) 

all the above divergence critical states become unstable16 . 
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:tp la=0.52.1 
., 

2.078 - - -

1.45 
t4blc 

bifun;:Hlon 
point 

1.55 

1.50 

1.45 

Stable 
crith;a! 
point 

Fig.3.Postbuckling paths for six characteristic values of a 

For loads p slightly higher than pC when damping is included the motion conve

rges towards the stable equilibrium point of the postbuck1ing path correspon -
ding to the lower branching point. When there is only one postbuck1ing path 
(i.e for a>Oo50) regardless of the value of a we have at p=1.50 a dynamic Hopf 
bifurcation; the equilibrium point attractor valid for p<1.50 is transformed 
into a stable limit cycle attractor for pc;;1.50.This is illustrated in Fig.4 • 
Following the definition for the dynamic instability load such a critical lo

ad can be established for bifurcationa1 systems by using a nonlinear either 
static or dynamic analysis. 

P'1.44<P~ 1) 

~1'''~2·0.1 

p.l.60>pc(2) 

unstable focus 
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According to linearized analyses2,3 the critical states corresponding to the 

load 
7+I1:!:V8+1411-40/ 

2(1+112) 
-O.305~11<4/9 (8) 

are found to be unstable associated with a divergent motion (flutter insta
bility).However,application of a nonlinear dynamic'analysis shows that all 
critical states in the region of nonexistence of adjacent equilibrium are 
stable(associated with bounded motion).Such a finding which contradicts exi
sting results2,3 is also due to the neglect of the last two terms in relation 
(5). This author has also shown 16 than there is no any destabilizing phenome
non due to slight damping if the foregoing terms are taken into account. The 
above findings hold for a Hookean material (y=ol=o2=o).However, for y suffi
ciently negative depending on the value of 11 the critical states in the re
gion of nonexistence of adjacent equilibrium may become unstable (associated 
with a divergent motion).Clearly, the last case is associated with an unsta
ble Hopf bifurcation,if damping is included. 

Imperfect system 

For systems with precritical deformation one can distinguish two characteri
stic cases; The 1st case refers to limit point systems and the 2nd one refe
rs to limit point systems which under certain values of the control parameter 
become stable(exhibiting a continuously rising equilibrium path).The most im-

,." 
/1 

/1 
I 

_I.' ... ,,,,,.4 

P" J.' 

. F.ig. 5.Dynamic critical load Pcrvs a 

undaaped 
.odel 

6,·"Z,S 

9. 62··~· 7S .·0 
c.-o.os .-0 
£2-.. 0 •05 
p-0.90< Per 

(0) 

d •• ped 

8. 

Fig.6.Chaotic and damped motion 

portant finding regarding limit point systems is the following;It can be sh
own with the aid of nonlinear dynamic analysis that these systems become un
stable(associated with a divergent motion) at (dynamic)loads always less than 
the corresponding limit point 10ads.Hence, the latter are higher than the co-
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rresponding dynamic buckling 10ads.Such a result is still valid if we eli
minate the effect of the mass (which may be appreciable for the dynamic bu
ckling 10ad).In Fig.5 one can see the difference between these loads versus 
the nonconservativeness parameter a.Note that for values of a to the left 
of the point A the system exhibits chaotic transients (Fig.6a,b). 
Regarding the 2nd case referring to stable systems, the nonlinear dynamic a
nalysis revealed(under certain values of the control parameter) three pheno~ 
mena;a)loss of dynamic stability,b)strong SIC and c) a jump in the dynamic 
critical 10ad.For instance a system with a=0,y=0,o1=-2.5,o2=-0.75,P=0.75'£1= 
0.05 and £2<-0.0315(where £2 is the control parameter) experiences a like 
chaos-(random) motion. If damping is included the dynamic buckling load is 
associated with a saddle point on the unstable postbuckling path.However, 
one should note that the determination of the dynamic buckling load is pra
ctically meaningless when there is SIC. 
Finally,for the imperfect model under discussion the inclusion of material 
nonlinearity does not increase the region of divergence instability.One sho
uld also notice that global solutions revealed that the magnitudes of criti
cal displacements were not consistent with the approximations in relation(5). 
Hence,the true nature of instability can be explored only by discussing lar
ge time solutions associated with the original nonlinear equations of motion. 
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The Exact Almost Sure Stability for a Specific 
Class of Non-Linear Ito Differential Equations 
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Summary 

The classic s tabili ty studies for linear Ito differential equations were developed by 
Khas'minskii in the 1960's. The main concept is to norm the solution and study the 
properties of the normed vector on the surface of the unit sphere. In th~ 1970's 
many ordinary second order dynamical systems were generated to their exact stability 
regions by Kozin and his students. The recent methods due to Wedig are the most 
efficient ways to determine the stability regions and Lyapunov exponents for the Ito 
one degree of freedom equations. There has not been in the past an exact study for 
non-linear Ito equations. In this paper we shall show that there is a class of 
homogeneous non-linear oscillators that can be transformed on the unit sphere and 
'the exact stability regions can be determined. Two simple examples will be 
presented. 

I. Introduction 

The classical transformation methods for the linear Ito equations can be found in 

reference [I]. Consider the system 

i=I, ... ,1 ( 1.1) 

where 

-+ x [ :: ). b = (bl>, B GJ 
B is a vector of independent Wiener components with E{Br(t)}=O, E{[Br(t)-Br(s)]2}=t-s. 

The classical generator for the system (1.1) can be written as 

where 

-+ I t -+ eru Lu = (b x, grad u) + 2: i,j=l aij( x) ax;8xj 
( 1.2) 
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The classic method for linear systems is that one may make the change into the 
-+ -+ 

unit vector >. - ! and study the magnitude of the solution in the logarithm 
II xII 

form p = log IIxli. Thus the stability properties of the solution can be determined. 
The following form can be obtained 

n 
d,c( t) - Q(>')dt + L (o(r)"1( t), "1( t»dBr( t), 

r=1 
( 1.3) 

and 

In the limit, we obtain 

lim t [log IIx(t)1I - log IIxo(t)lI] = lim t j Q("1(s»ds. 
tl°o tl°o 0 

( 1.4) 

On the unit sphere (or circle), the "1 is an ergodic process, and thus the 
stabili ty of the solution process is determined by the value of the average 

E{Q("1)}. Indeed if the average is positive the system is unstable and if the 
average is negative the system is stable. Thus, the stability curve is obtained by the 

expression E{Q("1»=O. One of the early papers to present the stability regions 
for a large class of stochastic mechanical oscillators is [2]. 

The interesting fact is that we can do this same analysis for an unusual class of 
non-linear oscillators as we shall see in the next section. 

II. Stability Study for a Certain Class of Non-Linear Ito Differential Equations 

We are interested in the non-linear equations of the form 

dx(t) = 7(x(t»dt + G(x(t»dB(t) (2.1) 

where x, 7 are I-dimensional vectors, G is an Ixn matrix and B is the n-vector 
of Brownian motions. 

The two general properties of (2. I) are 
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{

(a). 

(b) . 

lim fet) = 0, lim Get) = (0) 
IIXlI!o IIXlI!o 

(2.2) 

for arbitrary vector ct, m>o. 

We now assume the simple homogeneous property 

( 2.3) 

The interesting surprise is that (2.3) allows us to determine the same functions as 
( 1. 3), (1.4) for the linear system. The exact function Q( >.) can be written as 

-+T-+ -+ I I -+ T-+ 
>. f( >.) + "2 r;;1 (G( >')G (>'»ii 

I -+ T-+ - L (G( >.) G ( >.» r>'h 
iFi J 

(2.4) 

i,j=l 

The exact stability region is determined simply by E(Q(1')}=O. What is 
interesting is that one can now look at various homogeneous oscillators that could 
possess unusual non-linear functions of (x, x). Furthermore, the numerical 

2,.-

procedure fQ(O) p(O)dO = E(Q(O)} on the unit circle is obtained by Wedig's 
o 

method for computing p( IJ), [3]. We will now show two examples. 

III. Examples 

Consider the oscillator, which is homogeneous, 

( 3.1) 

Since l' (~p~ n on the uni t circle we find that the O-equation becomes 

dO = - [1+( 2€+cr) sin 0 cos OJdt - u cos 0 dB( t). (3.2) 

The generator of L of the O-process becomes 
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2 
L = - [1+( 2e+o2) sin 0 cos 0] -dd. + I o2cos2 0 iL 

0:2 d02' 

( d I q,2 d2 ) 
= CI>( U) dO + 2: (U) du2 . ( 3.3) 

On the unit circle, the singular points that are left shunts [2] occur only at 
1J=±1r/2. It is easy to show that the Q( U) function as from (2.4) is 

2,.. 

To determine the stability region of the form I Q( U) p( 0) dO 
o 

method of [3] is used to write the Fokker-Planck equation 

! :; [,j?(U)p(O)] - 10 [CI>(U)p(U)] = 0 

into the first order equation 

! .p2( U) dPdoU) + (1/J( 0) d1:) - CI>( U) ) p( U) = C, 

where C is the integral constant. 

( 3.4) 

". 

2 IQ( U) p( 0) dO, the 
o 

( 3.5) 

The sequential fraction to obtain the discrete values of Pn' which is a backward 

difference form, [3], can be wri tten as 

269 P + .p2p 
1 n n P = , n = 1,2,3, ... ,N 

n+l .p2 + 2AIif.p.p'_cI» 
n ~\nnn 

(3.6) 

where AO is a small increment in the unit circle angle 0, and .p~ is the value of 

the derivative of .p at the nth U-value. Figure I shows us the exact almost sure 
stability region, J<.Q, in terms of the horizontal damping e, and the vertical variance 

02. 

Let us now consider another unusual non-linear oscillator, which is 
homogeneous, 

(3.7) 

The transformation onto the unit circle yields the O-equation, 
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dO = [-1-2e cosO sinO - o2COS13/ 60 sin8( cosO-sinO} 2/6]dt 

+ (j COS9/ 60 (cosO-sinO) 1/6dB( t). 

The generator L for the O-process is given as 

L = [-1-2e cosO sino-o2cosI3/ 60 sin8( cosO-sinO} 2/6] -90 
2 

+ k 02 cos 18/68( cos 0 - sin 0} 2/6 JL 
~ drr 

163 

( 3.8) 

(3.9) 

Recall, L=W( 0) -ddo + 1 l/J2( 0} d2 For this nonlinear oscillator, we find the singularity, 
2 drr 

.1,2 0 1r 0 1r 511" 
'I' (0) =0, occurs at 1,2=± 2' and 3,4=4' '4 The points 01,2 are the usual left shunts and 

03,4 are regular shunts and regular boundaries. 

We evaluate the stability region, as above for 

2,.-

J E{Q(O}} fQ(O}p(O}dO 
o 

where 

Q(O) = [-2$;in20 + ~ cos8/ 68(cosO + sinO)(cosO - sinO) 7/6]. ( 3.10) 

Upon solving the p 
n 

J<O. Figure 2, shows the 

quantity e, and the variance 

IV. Conclusion 

as in (3.6) above, we find the exact stability region for 

stability region, again as the relation between the damping 

02. 

We find this interesting accurate method for homogeneous non-linear oscillators, 
can allow us to determine these stability regions. A very large class of oscillators can 
be studied, for interesting applications. 
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Summary 
In this paper the influence of a reduction technique on the dynamic be
haviour of mechanical systems consisting of linear components and local 
physical nonlinearities is examined. Reduction takes place by applying a 
component mode synthesis method which uses free interface eigenmodes and 
residual flexibility modes. A numerical method for determining the steady 
state behaviour of nonlinear dynamic systems is presented and combined 
with this reduction technique. 

1. Introduction 

In engineering practice many mechanical systems consisting of complex compo

nents with linear elastic behaviour and local physical nonlinearities can be 

found. Examples are a pipeline supported by stiffening springs and the exhaust 

of a road vehicle in which dry friction hinges are found. 

Accurate information about displacements, stresses etc. asks for (finite ele

ment) models with a large number of degrees of freedom (dof) resulting in ex

cessive computing times, necessary for the numerical integration of the non

linear differential equations. 

In this paper a component mode synthesis (CMS) method for the reduction of 

linear components is presented. The use of this reduction strategy in case 

local nonlinearities are present is evaluated by studying time response calcu

lations of a nonlinear system with different levels of reduction. A numerical 

method developed by Crooijmans (1987) based on time-discretization and an 

arc-continuation method will be combined with the reduction technique for the 

determination of periodic solutions of complex nonlinear systems. 

2. CMS: reduction of linear components 

The Ritz method, used to reduce the component equations, approximates the coor

dinate-space of a component by a linear combination of a limited number of 

so-called component modes. By selecting the proper component modes an accurate 

reduced model can be created. It would be convenient if the well-known fre

quency criterium for the complete system-model evaluation could also be applied 

to the component reduction. Preceding research (Langeveld, 1986) shows that 
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this is possible with a CMS method based on low frequency free interface eigen

modes and residual flexibility modes. Using component eigenmodes up to a 

certain cut-off frequency fc will result in accurate eigenmodes of the complete 

system also up to f . Moreover the reduced system model will produce exactly 
c 

the same solution as the original system model under quasi-static loads, pro-

vided that these loads act on dof for which residual flexibility modes have 

been defined. An ASKA process control program has been developed for this CMS 

method. The discretized equations of motion of a component are given by: 

M x + B x + K x = f -x ~ -x ~ -x ~ ~x 
(2.1) 

Column x (n*l) will be partitioned into internal dof ~r (nr*l), which are not 

loaded and boundary dof ~B (nB*l), which are loaded by interface loads ~xif 

and/or external loads ~xex 

T 
x 

Assuming proportional damping gives free interface eigenmodes from: 

o (i 1, ... , n) 

(2.2) 

(2.3) 

The eigenfrequencies and -modes in the range of interest 0 - fc Hz, which are 

kept in the component model, are stored in diagonal matrix QKK (nK*nK) respec

tively matrix ~K (n*nK). The deleted eigenfrequencies and -modes fill the 

matrices QnD(nD*nn) and ~D (n*nn)' 
To get a reduced system model, with unaffected static load behaviour, so called 

residual flexibility (rf) modes are defined for each of the boundary dof of the 

component. The rf modes appear to be important for accurate eigenmodes «fc) of 

the reduced system model and also for the frequency response functions near 

anti-resonances. For a statically determinate component the matrix with flexi

bility modes ~A (n*nB) is given by: 

~A = ~1 [Q. ] = ~ Q-2 ~T [Q. ] = ~ Q-2 ~~ 
IBB IBB 

(2.4) 

The matrix with rf modes ~B (n*nB) follows from ~A by deleting the contribution 

of the kept eigenmodes ~K: 
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-2 T -2 T 
~B = ~A - !11K ~K ~B = !I!n nOD !I10B 

The Ritz reduction matrix 11 (n*(nK + nB» which is used now reads: 

or ~BI ] 

~BB 

To permit simple coupling of the reduced component equations we write: 

Q. ] 
-1 
~B 

Combining (2.6) and (2.7) gives: 

nK + nB generally « n 

Using this transformation matrix 1. the component equations become: 

M P + B P + K p = f ; -p ~ -p ~ -p ~ ~p 

167 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

When all components have been reduced we can assemble the (reduced) system 

model by demanding compatibility of interface dof and equilibrium of interface 

loads. We define q (n *1) as the column with independent dof of the reduced 
~ q 

system model (modal dof ~~i) (i = 1 ••••• N) belonging to the N linear compo

nents and ~T' containing all boundary dof of the system): 

T (1) T 
q = [~K • (2.10) 

The equations of motion of the reduced system model finally are given by: 

M q + B q + K q = f -q ~ -q ~ -q ~q 
(2.11) 

3. Addition of local nonlinearities and numerical integration 

Local nonlinearities are added to (2.11) by means of internal loads ~nl (nq*l). 

Local nonlinearities are assumed to act only on boundary dof ~T: 

~q ~(t) + ~ ~(t) + Kq ~(t) + ~nl (~T' ~T' ~T' t) f (t) 
~q 

(3.1) 
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If the response of this reduced model (for example calculated by numerical 

integration) is sensitive for increasing the number of kept modes in the compo

nents we should be sceptical of the value of this model. If additional modes 

have negligible influence on the frequency spectra of ~q - ~nl and if all domi

nant frequencies of the spectra are present in the linear component models, the 

model reduction is successful. 

Example 3.1: (all quantities in SI units) Consider the 1D system shown in fig; 

3.1. A continuous linear bar (mass density p = 5, cross section A = 0.1, modu

lus of elasticity E = 15, length l = 3) is clamped at its right end and coupled 

with a sdof system of the Duffing type at its left end. 

non Inear 
k 

Fig. 3.1 Simple nonlinear system. 

O.3D HZ OUFFEY21C 0.369 HZ - 0 .39 HZ OUFFEYZ IC 

(a.) ( b) 
Fig. 3.2 Nonlinear time responses. 

The homogeneous differential equation of the Duffing system is given by 

0.5 x + 0.02 x + 0.5 x + 0.04 x3 = O. The bar is modelled with 50 elements. 

Three models were created and evaluated: 4C, 6C and 21C (undamped linear system 

reduced to 1 rf and respectively 3,5 and 20 kept eigenmodes). Numerical 

integration showed 2 steady-states at 0.38 Hz as given in fig. 3.2a (zero ini

tial conditions, 21C) and fig. 3.2b (frequency sweep 0.368 Hz~0.38 Hz). With an 

FFT-algorithm frequency spectra for the 3 models were calculated for 

displacement x and load Fx-Fnl in the steady-state range of fig. 3.2b, see fig. 

3.3a-3.3.f. 
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Fig. 3.3 Frequency-spectra for steady state responses. 

Small differences were found between corresponding spectra calculated with 

model 4C and 21C. No significant differences were found between those calculat

ed with 6C and 21C. The maximum displacement errors were -O.24(4C-21C) and 

3.0E-3(6C-21C). The CPU times needed for the integration were 1024[s] (4C)i 

1522[s] (6C) and 11983[s] (21C). So 6C provides an accurate solution and saves a 

lot of CPU-time. 

4. Periodic solutions of nonlinear dynamic systems combined with reduction of 

linear components 

The software program LIMSET (Crooijmans, 1987) has been developed for determin

ing static, periodic and quasi-periodic equilibria of nonlinear dynamic sys

tems. Stable equilibria as well as unstable equilibria can be computed. Equa

tions (3.1) are transformed into a set of (m*nq) nonlinear algebraic equations 

using time-discretization of the periodic solution (for details, see 

Crooijmans). This results in: 

H(z, r) o (4.1) 
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where z contains the discretized values of the resulting dof q at the times - -
0, t.t, 2t.t, ... , (m-1) t.t and r contains selected design variable (s), (stiffness 

values, prescribed frequencies, etc.). Equation (4.1) can be solved by using a 

Newton-Raphson process or by using an arc-continuation method (Fried, 1984) 

which makes it possible to investigate how changes in a design variable will 

influence the periodic equilibrium. 

By coupling the ASKA program with LIMSET it became possible to obtain approxi

mations of periodic equilibria of complex dynamic systems with local nonlinear

ities. For illustration we will now investigate the steady state behaviour of 

the system presented in example 3.1. 

ELample 4.1: The discrete mass of the system was loaded by the periodic exter

nal load Fx = sin(2~ft). By choosing f as the design variable to be varied, we 

are able to calculate frequency respons functions (frf). Two models were evalu

ated: 4c from example 3.1 and 4a which is identical with the exception that in 

the calculation of the rf- and the (3) eigenmodes the whole Duffing system was 

ignored. 

Table 4.1 gives the four lowest eigenfrequencies of the unreduced system model, 

model 4a and 4c for the linear, undamped case. 

unreduced 4a 4c 

1 0.1504 0.1504 0.1504 
2 0.3589 0.3589 0.3589 
3 0.6187 0.6199 0.6187 
4 0.8957 0.9648 1.0210 

Table 4.1 Elgenfrequencles (Hz) of llnear, undamped models. 

The frf of 4a and 4c are shown in fig. 4.1a and fig. 4.1b. In the calculations 

40 discretisation points were used. Each analysis costed approximately 9000 s. 

CPU time on an APOLLO workstation. The two figures look very similar with ex

ception of the behaviour near 0.2 Hz. 

< 

i ICII. 

(a.\ 

4a 4c 

i ... 

lb) 

!UD _ 
~ 5"., _ 

(C) 

----. X --p, 
---~. Pz 
............ fJ 

Fig. 4.1. Frequency respons functions for models 4a and 4c. 

mod.l4c 

I 
.I 
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The first three small peaks can be identified as superharmonic resonances. They 

occur at 1/3 f1' 1/3 f2 and 1/5 f 3. In fig. 4.1c the frf of x is split into the 

contribution of the 3 modal coordinates P1' P2 and P3. Clearly can be seen that 

P1 is responsible for the peak at 1/3 f1' Pz for the peak at 1/3 f2 and P3 for 

the peak at 1/5 f 3. 

( ) (dl 
Fig. 4.2 Phase portraits of some periodic solutions and -contributions. 

Figures 4.2 show the periodic solutions of x resp. the modal dof responsible 

for the superharmonic resonance mapped in phase space at 1/3 f1' 1/3 fZ and 1/5 

f 3. We verified the superharmonic resonance at 1/3 fZ by numerical integration 

of model Zlc (see example 3.1). The result shown in fig. 4.Zc covers completely 

fig. 4.3. 

,x, 
,,00 

Fig. 4.3 Phase portrait of model 21c by numerical integration. 
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Near 0.2 Hz we see in fig. 4.1a two peaks whereas in fig. 4.1b only one peak is 

found. This is caused by the fact that the superharmonic solution at 1/5 f4 

occurs at a lower frequency with 4a than with 4c. An annoying fact is that this 

superharmonic solution will not occur in reality because f4 is an artificial 

eigenfrequency due to the rf mode. On the other hand the rf mode showed to have 

a strong positive influence near the anti-resonances. 

Finally we look at the periodic solutions of x at 0.38 Hz. At this frequency 

LIMSET found three periodic solutions of which two are stable (amplitudes 1.049 

and 6.248) and one is unstable (amplitude 5.176). The two stable periodic solu

tions were also found by numerical integration in example 3.1, the unstable one 

could only be found by the LIMSET program. 

5. Review and conclusions 

1) A CMS method based on free interface eigenmodes and residual flexibility 

modes is presented. With this method a frequency criterium can be applied at 

component level to reduce linear components. 

2) A strategy has been proposed for sensible reduction of systems, consisting 

of linear components and local nonlinearities. It has been applied success

fully to a system with a local nonlinearity of the Duffing type. The amount 

of CPU time that could be saved in a time integration analysis by reducing 

the linear component was considerable. 

3) A numerical method for the calculation of periodic solutions of nonlinear 

dynamic systems is combined with the reduction technique for linear compo

nents. Results for systems with a local nonlinearity of the Duffing type 

showed a very good agreement with numerical integration solutions. 

4) Artificial eigenfrequencies above the cut-off frequency fc caused super har

monic resonances below fc which will not occur in the original system model. 

Therefore it should be advised to truncate the system eigenfrequencies above 

fc after coupling of reduced linear components. Consequently responses near 

anti-resonances can become less accurate. 
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Stochastic Model for Rattling in Gear-Boxes 

\. Kunert, F. Pfeiffer 
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)ummary 
:Jonsidering dynamics of drive trains, rattling in gear boxes is examined. After a time
:ontinuous description by a patching method and the derivation of discrete mappine;s for 
ubitrary systems with backlashes, in a third step influence of noise excitation whIch is 
Jresent in any technical system is studied. The probability density is obtained by numerical 
iolution of the Fokker-Planck-Equation and results are discussed in comparison to velocity 
listributions calculated by discrete mappings without noise excitation. 

[ntroduction 

III the last few years rattling in gearboxes has become interesting to engineers because of 
developments in car technology. Combustion engines have become less noisy, gearbox casings 
Ilave been reduced in weight and as a consequence rattling of gearwheels may be heard. So 
rattling has become a problem of comfort. 

Gearbox Model 

jriving shaft driven shaft 

counter shaft 

Fig. 1: Gearbox Model 

counter shaft 

nominal 
motion 

exc~ 

~'\ 

) 
planes of action 

Fig. 2: Meshing gearwheels 

At first, the main features of a gearbox and the cause of rattling is discussed briefly. In 
figure (1) a diagrammatic view of a gearbox is shown. On the left hand side the driving 
shaft is displayed. It. rotates with a nominal frequency and a superimposed fluctuation 
due to variations of the engine's rotational speed. In the following this fluctuation will be 
considered only because it excites rattling vibrations. The countershaft and gearwheels fixed 
on it are driven by the driving shaft and transmit power to the driven shaft via loaded gears. 
The remaining gearwheels which are not fixed on the driven shaft are excited by the motion 
of the countershaft as it is shown in figure (2). Meshing gearwheels move freely within the 
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backlash until an impact takes place at the end of a backlash and rotational speed is changed 
suddenly. Rattling will be most significant if the gearbox is not under load because every 
pair of gearwheels contributes to rattling noise. Similarly, in the case when the driven shaft 
is connected directly to the driving shaft noise will be very significant. In the usual case of 
power transmission the gearbox is under load. Power transmitting gearwheels stay in contact 
because of the load and only gearwheels which are not concerned with power transmission 
may rattle. So later we will concentrate on the motion of a meshing pair of gearwheels. 

General numerical concept 

Subsequently, basic ideas for the numerical solution of rattling will be pointed out. This 
procedure works for arbitrary systems with multiple backlashes and is discussed in more 
detail by [PFEIFFER 1984]. 

Fig. 3: Free flight and contact phase 

The equations of motion for an gearbox with n backlashes are given by equation (1), where 
q E IRn is the vector of coordinates in configuration space. 

M(q)q - Q(q,q,t) = 0 (1 ) 

Motion takes place in a restricted area, where boundaries for space variables are equivalent 
to switch planes. At these switch planes constraints of motion have to be evaluated. These 
constraints are given by the impact equations (2). 

q+ = Unq- + bnen 

Mq+Dq+T=O 

(2) 

(3) 

The velocities just after an impact in the n-th backlash q+ are given by a transformation 
of the velocities just before an impact 4- according to the matrix Un and the excitation 
velocitye at the time of impact. The Matrix Un and the vector bn depend on the stage where 
an impact takes place. The velocities after an impact are initial values for the following free 
flight phase, where motion is described by forces of inertia (given by matrix M), damping 
(matrix D) and the matrix T which contains the drag torques (3). During integration 
of free flight equations (3) it has to be checked, which switch plane is reached first. For 
an impact in the determined stage appropriate impact equations (2) are used to calculate 
initial values for the next free flight. So free flight and impacts are alternating in this time
continuous description. In a second step, a time discrete procedure is choosen instead of a 
time continuous one. The switch planes are taken as Poincare sections and so only states 
just before an impact are considered. This leads to a recursive mapping which describes 
motion from k-th impact to (k+1)-th impact. 
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he mapping is given by an implicit formula (4) because determining the time of the next 
npact requires calculation of relative distances in all n stages. 

x=(q,q,t) (4) 

'he advantage of time-discrete mappings over a time-continuous description is given by 
n analytical integration of equations of motion within the backlashes. Using mapping 
quations (4) a lot of computational time is saved because algebraic equations are used 
Istead of ordinary differential equations. 

lingle stage rattling 

e(t) = -asin(wt) 

r--
/--....... 

\ 
) 

Fig. 4: Meshing pair of gearwheels 

\8 an example, mapping equations for an unloaded pair of meshing gearwheels are given. 
rhe displacement of the gearwheel at the right is given by excitation e(t) which is assumed 
,0 be harmonic with frequency wand amplitude a. In the plane of action the backlash is 
~iven by its magnitude v. The damping force and drag torque are taken into account by 
Jarameters d and T. R represents the radius of the reference circle of the driven gearwheel 
!Vith moment of inertia I. Mapping equations for velocity before the k-th impact Wk, time 
Jf impact <J>k and space coordinate Xk are derived with parameters given in equations (5-6). 

CPk 
Wk=-i 

we 

T 
{}=-i 

dwe 

d 
e = Iwi 

v 
Xk=± -i 

2a 

1; =wt. 

(5) 

(6) 

wt is the velocity just after an impact, which is given by impact equation (6) in dependence 
of the coefficient of restitution c. Integration from impact to impact then yields: 

({} + \[it) exp( -et.<J>k) - {} 

<J>k + t.<J>ki (mod 21l') 

Xk - sin <J>H! + sin <J>k 
1 --({} + \[it)(1- exp( -et.<J>k» + 1?t.<J>k 
e 

(7) 
(8) 

(9) 

The mapping equations (7-8) describe motion in a Poincare section. The switch planes are 
equivalent to the Poincare sections which are given by both boundaries of the backlash Xk, 
so time and velocity are the remaining variables in the case of single stage rattling. The 
timestep t.<J>k between two impacts is given implictly by equation (9). 
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Poincare section and probability density 

Fig. (5) shows a typical strange attractor for single stage rattling. In this figure all impacts 
at both sides of the clearance are plotted. The velocities are transformed to relative ones, so 
negative velocities indicate an impact at the left side of backlash and vice versa for positive 
velocities. For chaotic motion very irregular motion is found with a high rate of divergence 
of nearby trajectories described by positive Ljapunov exponents. The motion is spread 
around on the attractor, so one has some inherent diffusion in the case of chaotic motion 
as opposed to periodic solutions. For chaotic motion there is not much sense in looking at 
highly irregular trajectories over time, so in figure (6) timedependent velocity distributions 
are ploUed against the Poincare section. This provides a better survey of the appearing 
velocities. Due to the coarse grid, distributions look smoother than they are in reality. 
Examination of rattling noise which is caused mainly by high relative velocities before an 
impact requires looking at the attractor in more detail. In figures (6a),(6b) the distributions 
against the Poincare section of figure (5) are shown. Figure (6a) shows the distribution for 
successive impacts at the same side of clearance. Higher velocities are due to successive 
impacts at different sides of backlash (Fig.6b). Especially for great drag torques the impacts 
take place mostly at one side of the backlash which leads to reduced rattling noise. 

>-t: I," 

U 
o 
..J 
W 
> 

-.& 

-1.0 

Fig.6a: 

3 
Fig.6b: 

TIME 

Fig.5: Strange attractor 

Fig. 6: Timedependent velocity distributions 

Stochastic model 

~ 
Z 
III 
o 

In the model used above (Fig. 4) technical imperfections are not considered. Imperfections in 
tooth geometry, oil splashing and noise excitation destroy the fractal structure of the strange 
attractor as has been observed in experiments [KARAGIANNIS 1989]. So the influence of 
additive random noise is examined. If external noise is added to the equations of motion the 
solution for the dynamical response is given by a probability density. There are several ways 
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calculate the evolution of probability density, but different problems arise. Using Markov 
lains the problem is given by determining transition probabilities. Iterative calculation 
the invariant measure fails in general for nonsmooth distributions because of lack of 

mvergence. Approximation techniques can be applied using the special structure of the 
apping equations (7,8), as in [KARAGIANNIS 1989], where an assumed distribution for 
Ie times of impact is used to calculate statistical moments for the velocities. 

l this paper the Fokker-Planck-Equation is used to describe stochastic behaviour. This par
al differential equation provides probability density in dependence of state space variables 
Id time for any dynamical system under additional white noise excitation. 

o.fluence of additive random noise 

1 principle, the influence of additive random noise is described by [CRUTCHFIELD et al. 
982] for the logistic map. Additional random noise does not change the global structure 
f the attractor. Small periodic windows vanish after the onset of chaos because any finite 
xternal noise leads to a scaling of amplitudes and so all subharmonics above a certain order 
re eventually suppressed. Subharmonic solutions of high order become unobservable because 
hey have merged into the chaos provided by external noise. Theoretically and practically it 
,ould be of great importance to obtain the probability density of the unperturbed strange 
,ttractor by a limiting process for vanishing noise intensity, providing the limit exists. 

!bkker-Planck-Equation for single stage rattling 

",=-1 F(T) ",=1 g(x) b(x) 

p n (J 

x -1 1 x 

~---------f e(T) = -",sinT 

Fig. 7a: Equivalent model Fig. 7b: Restoring force g(x), damping ratio b(x) 

An equivalent model for single-stage rattling is shown in figure (7). Dimensionless relative 
coordinates x, yare used and the boundaries of backlash are given by x = ±1. Excitation 
by displacement is given by the dimensionless harmonic function e( r) where r represents 
dimensionless time and a contains the ratio of excitation amplitude to magnitude of backlash. 
The damping ratio during a free flight phase is given by (3. 0 is the generalized drag force. 
The random force is described by F(r) which is o-correlated for white noise excitation. The 
dynamical system for single-stage rattling is then described by state space equations (11) 
using the given parameters. 

x = 2(R<p - e(t))/v; a = 2a/v; (3 = d/(Iw); 0 = 2RT/(Ivw2) (10) 

x y (11) 
if = -b(x)y-g(x)-O-a(sinr-(3cosr)+F(r) 
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Contact is modeled by a linear spring and a damper. The restoring force is given by the 
function g(x). Damping within backlash (lxl < 1) equals (3, for contact phase b depends on 
the coefficient of restitution c. The evolution of probability density U(x, y, T) is described by 
the Fokker-Planck-Equation which is a partial differential equation of parabolic typo 

aU = -~(yu)- ~((-b(x)y-g(x)-9-asinT+a(3cosT)U) 
aT ax ay 

1 a2u + 2 Sy ay2 (.12) 

The change of probability density over time is given by so called drift and'diffusive terms. 
The drift terms contain the right hand sides of the dynamical system and the density itself. 
The diffusive term is due to white noise excitation with noise intensity Sy. The given equation 
(12) is a conservative equation for probability flux. 

Numerical solution of Fokker-Planck-Equation 

Several solution techniques for the Fokker-Planck-Equation are discussed in [RISK EN 19841. 
Using finite differencing methods, ADIP (alternating direction implicit procedure) is an ap
propriate procedure ([MITCHELL 1969]). The continuous density U(x, y, T) is approximated 
by discrete values d(xj, yI, Tn) at spacial grid points xi! YI and at discrete timesteps Tn' For 
evolution in time each timestep is devided into two substeps. At each substep the differen
tial operator in one space direction is evaluated implicitly according to a Crank Nicholson 
scheme. L", ,Ly are discrete difference operators in x and y direction derived by Taylor 
expansion of equation (12) up to an accuracy of second order. 

d'J.tl/2 = d'J.1 + ~.6T (L", d'l.tl/2 + Ly d'J.,) (13) 

cr;+1 = £+1/2 + !.6T (L £+1/2 + L cr;+1) 
j,l J,I 2 '" ],1 Y J,I (14) 

Boundary conditions for probability density are given by a vanishing density at state space 
boundaries. 

A separation of free flight and contact phase according to the mapping equations is also 
tried for high restoring forces during contact. The Fokker-Planck-Equation is solved within 
the backlash according to the procedure given above. Impacts are described by boundary 
conditions for probability density at x = ±1. There are still some open questions regarding 
concurrent diffusive and advective transport during contact phase. 

For smooth functions g(x), b(x) the Galerkin method is applied with Hermite functions as an 
orthogonal set of shape functions for the probability density in state space. Investigating a 
wide range of system parameters, shape functions have to be fitted for more accurate results. 
Up to now results for small noise intensities are not yet satisfactory. 

Results 

Results for the Fokker-Planck-Equation using ADI procedure are given below and are com
pared to results obtained by discrete mapping without noise excitation. In figure (8) deter
ministic motion is displayed in the phase plane described by relative space x and relative 
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locity y. Trajectories move within backlash (-1 < x < 1) and reaching boundaries at 
= ±1, velocities are changed according to impact equations. Small velocities lead to 
ccessive impacts at the same side of backlash while higher velocities change the side of 
,cklash for the next impact. Chaotic trajectories fill out areas of attraction completely, 
probability density against phase plane (Fig.9) and distribution for velocities before an 

lpact at x = -1 (Fig. 10) is considered. 

Fig. 9: Density against 
phase plane 

Densitiy 

-I 

x 

Fig. 8: Phase portrait 

.1 

.0 

y 

Density 

x =-1 

Fig. 10: Density section 

'he density shown in figure (9) is calculated with smoothed transitions in g(x) and b(x). 
t gives the integral value of g(x,y,r) over one period of the excitation function e(r). For 
ligh velocities the areas of attraction are in good agreement with results given in the phase 
'Ol-trait (Fig 8). For a detailed discussion it is necessary to look at a section of the density 
Dr instance at x = -1, shown in figure (10). The smooth probability density is obtained by 
iUmerical solution of the Fokker-Planck-Equation while the nonsmooth density results from 
, velocity distribution calculated by a mapping without any noise. Due to noise excitation 
,nd its diffusive effect, the nonsmooth fractal structure of the strange attractor is destroyed. 
t is noticed that noise leads to an increased density for small velocities in comparison to 
he system without noise. This can be interpreted physically. Due to the presence of noise 
here are trajectories with reduced velocities compared to the unperturbed deterministic case 
vhich lead to repeated impacts at the same side of backlash. So the probability of finding 
rajectories at the wall is increased for small velocities. In [LICHTENBERG/LIEBERMAN 
983] a similar result is obtained for the Fermi attractor which describes the motion of a 
)oullcing ball between a fixed and a moved wall using a modeled diffusive term. 
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Further work 

As noise is present in all technical systems a next step consists of including noise excitation 
to the mapping equations. The modeling of the diffusive term has to be done carefully. 
Numerical problems arising for small noise intensities and stiff springs describing contact 
forces will be handled. Different shape functions for the Galerkin method will be examined 
because the use of Galerkin method reduces the partial differential Fokker-Planck-Equation 
to a set of ordinary differential equations. The problem of multistage rattling under noise 
excitation is still unsolved and requires different solution techniques. 

Acknowledgement 

This work is supported by a grant from the Volkswagen-Stiftung under project 1/62 888. 

References 

[CRUTCHFIELD et al. 1982] 
Crutchfield, J:P., Farmer, J.D., Hubermann, B.A.: Fluctuations and Simple Chaotic 
Dynamics, Phys. Rep. 92,45 (1982) 

[KARAGIANNIS 1989] 
Karagiannis, K.: Analyse stofibehafteter Schwingungssysteme mit Anwendung auf 
Rasselschwingungen beim Zahnradgetriebe. Doctor thesis at Lehrstuhl B fiir Me
chanik, TU Miinchen (1989) 

[LICHTENBERG/LIEBERMAN 1983] 
Lichtenberg, A.J.; Lieberman, M.A.: Regular and Stochastic Motion. Springer
Verlag, Berlin-Heidelberg-New York-Tokyo (1983) 

[MITCHELL 1969] 
Mitchell, A.R.: Computational Methods in Partial Differential Equations. John 
Wiley & Sons, London-New York-Sidney-Toronto (1969) 

[PFEIFFER 1984] 
Pfeiffer, F.: Mechanische Systeme mit unstetigen Ubergangen. Ingenieur Archiv, 
Bd. 54, Nr. 3, 232-240 (1984) 

[PFEIFFER 1988 a] 
Pfeiffer, F.: Seltsame Attraktoren in Zahnradgetrieben. Ingenieur Archiv, Bd. 58, 
113-125 (1988) 

[PFEIFFER 1988 b] 
Pfeiffer, F.: Theorie des Getrieberasselns. VDI-Berichte Nr. 697, 45-65 (1988) 

[RISKEN 1984] 
H. Risken: The Fokker-Planck Equation. Springer Verlag, Berlin- Heidelberg-New 
York-Tokio (1984) 



www.manaraa.com
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Summary 

An approximate nonlinear analysis of self-excited near criti
cal vibrations of a rigid transversally loaded rotor supported 
in journal bearings is presented in this paper using the theory 
of bifurcations due to Iooss and Joseph. Analytic expressions 
for amplitudes, frequency and phase displacements for both ra
dial and circumferential components of the rotor in-plane vi
bration are derived and the role of system parameters is ex
plained. The second order approximation periodic solution is 
constructed and its orbital stability is discussed. 

Introduction 

Rotors supported in journal bearings being essential parts of 

such machinery as generators, turbines, compressors etc. show 

interesting dynamical features connected with complicated non

linear hydrodynamical forces of an oil film action. The dyna

mics of rotor/bearing systems has been studied for more than 60 

years from the early paper by Newkirk and Taylor [1] through 

more advanced research done by Hori [2] and Tondl [3] to the 

recent results reported by Hori [4] and Muszyi~ska [5]. A comp

rehensive experimental as well as theoretical study of transve

rse vibrations of an unloaded flexible rotor/bearing system was 

presented in [5]. However, there are structures in which rotors 

work under significant transverse loads. Their near-critical 

behaviour and self-excited vibration still remain a problem 

of question. It is also a problem of big practical importance. 

On the one hand, sometimes rotors have to operate under condi

tions close to criticality and a vibration of small amplitude 

is acceptable provided that it can be controlled. On the other 

hand, it is important to be able to detect and exclude subcri-

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
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tical self- excited vibrations which, being unstable, are more 

dangerous to the system than usually considered supercritical 

ones. 

In the prasent paper a nonlinear local analysis of self-exci

ted vibrations of a rigid transversally loaded rotor supported 

in journal bearings is done using the Hopf bifurcation theory 

developed by Hassard [6], looss, Joseph [7] and others. The 

self-excited vibrations in a physical system which occur at 

criticality and develop in a neighbourhood of it correspond to 

the Hopf bifurcation in the differential equations of motion. 

Applying the theory of bifurcation due to looss, a periodic 

solution (vibration) of the second approximation is constructed 

in a parametric form of a series. Moreover, some interesting 

qualitative features of near-critical vibrations are reported. 

The most important property is that both sub- and supercritical 

vibrations are possible and the type of self-excitation depends 

on all structural parameters of the system. In the subcritical 

regionj for insrance, usually treated as safe, an unstable li

mit cycle may exist and a sufficiently big accidental initial 

condition can lead to large vibrations with all their bad con

sequences. 

Formulae derived in the paper can be used to determine permis

sible sets of points in a multidimensional space of system pa

rameters (feasible domains). This is of big importance in CAD 

and diagnostics of rotating machinery. 

Equations of motion 

The considered system is a rigid rotor of mass m supported in 

Fig.l Vibrating system Fig.2 Coordinate system 
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journal bearings and statically loaded by a transverse force Q 

of constant direction (Fig.l). The system is symmetric and as

sumed to have two degrees of freedom. Applying a plane journal 

bearing model based on superposition of hydrodynamical forces 

corresponding to the wedge and squeeze effects treated separat

ely, we obtain the following equations of motion in the polar 

coordinate system shown in Fig.2. 

r: -z) mc le - eC( 

mc (eG~ + 2~~) 

where P l 
( -) -0 5 -1 nCe ,w-20' U - V , U 

P 
n 

+ Q sino,-} 

P + Q cose, 
t. 

Pn = _2c[e Z1 w-2c'lu-1v-1 + e~U-1+ 2eU-1.Sarc tg(Cl+e)U-O_S)] 

and the notations are as follows 

(1) 

~ - oil viscosity, L - bearing total length, R journal ra-

dius, c - bearing clearance, 6 c/R - clearance ratio, m 

rotor mass, w - angular speed of rotation, Q - static load. 

Equations of motion (1) contain seven parameters: rotational 

speed w which plays the role of the bifurcation parameter and 

six other parameters p = [~,R,L,6,m,Ql, that are also important 

to the bifurcation problem. 

Putting e = a = 0 and e = a 

of equilibrium points 

o in (1) we can determine the set 

(2 ) 

Particular equilibrium coordinates can be calculated as fun

ctions of parameters eo = eo(w,p) and C(o = ao(w,p). 

Introducing new variables: u1 = e-eo ' uz = e, u 3 a-ao and 

u4 = a, we obtain the following matrix equation of motion 

u = f(w,u,p) (3) 

where u = [u ,u ,u ,u JT and the right hand side function f is 
i 2 3 4 

determined upon equations (1). 

stability of equilibrium 

we shall determine the region of stability for the trivial so

lution of (3) using the Hurwitz criterion to the linearized 
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equation of motion u = A(w,p)u. The condition of stability can 

be expressed in terms of the relative eccentricity and so cal

led dynamic bearing parameter 'I' = I-ILm-1w-\5-3 

b b b - b b 2 - b 3 2: 0 (4) 123 03 1 
where b. = b (e_ ,~) are coefficients of the corresponding cha-

c c U 

racteristic equation (i=0,1,2,3). Inequality (4) can be solved 

with respect to ~ and written in the form ~ 2: h(eo )' where 

h(e o ) is a monotonically decreasing function shown in Fig.3. 

'I' = h(eo} 

06 

;;,. 

'- 04 <II 

<II 
E 
~ 
0 
c-

o 02 -E 
0 
c 
>. 

0 

0 Q2 0.4 0.6 0.8 1.0 
Eccentricity, eo 

Fig.3. Journal equilibrium stabilityand instability regions 
S - stable, U - unstable. Effect of dimensionless load on 
critical journal eccentricity. 

Introducing another parameter, so called dimensionless load Q' 
.5 ( 2 2 ) • = QmO / 61-1 L R , we can show a famlly of curves (Fig.3) being 

sets of operating points for various values of the dimen

sionless load Q' and varying speed of rotation. The family equ

ation can be written as follows 
'1' = Q,-1eoU-1v -1 (4e~+n2U)0- 5 (5) 

At points of intersection of curves (5) and the stability limit 

h(eo ) there exists always a pair of imaginary eigen-values and 

this is one of the necessary conditions for the Hopf bifurca-
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tion. The dominat role is played by the first eigen-value 

r 1(cu,Q') = C;(O),Q')+iY)("),Q') which becomes imaginary at criti

callity i.e. r 1(wC ,Q') = iOo(Q'). It was numerically examined 

that the complex plane trajectory of the first eigen-value r 1 

intersected the imaginary axis for every Q' and this implies 

inequality ~w(wc,Q') > 0 which expresses the second condition 

for the Hopf bifurcation. 

Bifurcating solution 

In this section we shall construct the bifurcating periodic 

solution in a parametric form of a series due to Iooss [7]. 

u(s,e) = (n!)_1e nu <nl(s),s=0(e)tj 

O(G) = (n!r1 e n On 

wee) = (n!ri,.;n")n 

(8) 

where 0 is the frequency of bifurcating solution, e is a pa-

rameter interpreted as a distance between periodic and 

solutions, u'nl(s) are 2n-periodic vector functions and 

trivial 

w ,0 
n n 

are constans to be determined. The unknown functions 

cribed by the following linear recurrent equations 

are des-

I u <nl = g (s); g1 ( s) _ 0 
o n (7) 

d( 0 ) 

where loCo) = -Oo-as- + A(w,Q')(o), 

dU<11 w 
gn(s) = nOn_1~ - nWn_1fuw(wc,Olu ) - Rn_1, 

fuw is a multilinear operator [7] and Rn_1 contains terms of 

order lower than n. Solving the first and the second equations 

of (7) under the solvability condition (Fredholm alternative), 

we can show that the second order approximation periodic solu

tion of equation (3) can be expressed as follows 

u(s,e) = 2eRe{qe"'} + O.5ezK + eZRe{LeiZS} (8) 

where 

s = (2t, (2 
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w 
2 

+ 3 < f (W ,Olqlqlq), q*>, 
uuu c 

K -2{A('.U ,Q,)}-if (W,Olqlq), 
c uu c 

L = - {A(W ,Q' ):"2i0. I}-\ (W ,Olqlq), I is a unit matrix, 
c 0 uu c 

q,q* 

are orthonormal eigen-vectors of the linearized system matrix 

A(wc,Q') corresponding to the first eigen-value and <a,b>= a b , c 

is the scalar product in the four dimensional Euclidean complex 

space. 

On the factorization theorem [7] the Floquet exponent determin

ing the orbital stability of the bifurcating solution can be 

expressed as follows 

0'(.0:) (9) 

Since (,,..{,_vc,Q') > 0, the limit cycle is stable if w2 >0. 

Exemplary results 

In the numerical calculations the effect of nondimensional load 

Q' has been examined. It represents all the system parameters 

except the speed of rotation. For every Q' the follwing quanti-

ties were calculated: w - critical rotation 
c 

speed, e ,'1-' oc C 

critical eccentricity and dynamic parameter, ~w(w~)'~w(wc) - w

-derivative of the first eigen-value at criticality, 0 0 - ini

tial flutter frequency, wz,Oz - first coefficients in '-0(6) and 

0(&) series, K - vector of the constant component, L second 

harmonic vector, q,q*-orthonormal eigen-vectors at criticality. 

One of the most important results can be seen in Fig.4. The sy

stem exhibits two dimensionless load domains. For small Q' (Q'< 

Q;) we deal with a subcritical bifurcation in which an unstable 

vibration exists for w<wc. For Q'>Q; the Hopf bifurcation is 

supercritical and the corresponding limit cycle is orbitally 

stable. Two limit cycles projected on the plane of displacemen

ts-stable and unstable are shown in Fig.5. 
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Conclusions 

The theory of bifurcations is a powerful mathematical tool for 

the dynamical analysis of self-excited vibrations of rotors. It 

is also applicable in other systems exhibiting self-excitation 

(aeroflutter, vibrations of cutting tools etc.) In the consi

dered rotor/bearing system the self-excited vibrations may oc

cur in a large of static loads. There is no characteristic cri

tical eccentricity as shown in some papers. The application of 

the bifurcation theory allowed to discover that the system can 

exhibit not only supercritical vibrations as usually reported 

but also subcritical ones and this corresponds to more dangero

us loss stability. The type of bifurcation and its stability 

depends on all the system parameters and this depedance has 

been determined above. Formulae derived in this paper can be 

applied in CAD (dynamics-induced regional constraiints of para

meters) as well as in diagnostics of rotating machinery (role 

of parameters in vibration). 
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Summary 

An approximation procedure is used to compute probability 
densities for the response variables of a hysteretic system 
under Gaussian white noise excitations. The excitations can be 
both additive and multiplicative. Accuracy of the procedure is 
substantiated by comparison with simulation results. 

Governing Equations 
We consider a single-degree-of-freedom system governed by 

X" + 2CX' + [a - K - n(~)]X + (1 - a)Z = ~(~); 

o ~ K < a ~ 1 (1 ) 

where each prime denotes one differentiation with respect to a 
non-dimensional time ~, where C, a, and K are constants, where 
n ( ~) and ~ (~) are Gaussian white noises, and where Z is a 
hysteretic restoring force. Various mathematical models for Z 
have been proposed. We shall use in our numerical examples the 
bilinear model, described by 

0, Z sgnx' 1 
Z' = { 

X' , I Z I < 1 
(2 ) 

and the Bouc-Wen model [1,2], described by 

Z' = - y I x'i Z I Z I n-1. - I3X' I Z I n + AX' (3 ) 

Physically, equation (1) may represent a simplified version of 
a beam-column subj ected to a static axial load K, a dynamic 
axial load n (~) and a dynamic transverse load ~ (~), all of 
which are sui tably normalized and nondimensionalized. OUr 
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obj ecti ve is to determine the probability densities of X and 
X', or other response variables related to X and X'. 

Dissipation Energy Balancing 

Exact probabilistic solution for equation (1) is not obtainable 
at the present time. An approximation scheme, developed 
recently for nonlinear but generally non-hysteretic systems [3] 
will now be adapted· to treat hysteretic systems. In this 
scheme, the original system is substituted by another system 
which is solvable exactly. The exact solution of the 
substituting system is then taken as an approximate solution 
of the substituted system. The criterion for substitution is 
called "dissipation energy balancing" namely, the average 
dissipated energy remains the same for the two systems. 

Consider 

X" + h(X,X') = fi(X,X')Wi(~1 (4) 

where Wi(~) are Gaussian white noises, and 

(5 ) 

It can be shown that if 

then the response of the stochastic system (4) has an exact 
stationary probability density 

where 

P(A,) 

X 
!(X')' + I g(u)du = !(X')' + G(X) 
20 2 

(7 ) 

(8 ) 

in which case system (4) is said to belong to the class of 
generalized stationary potential [4]. Function g(X) in equation 
(6) represents the conservative spring force or "effective" 
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conservative spring force which does not dissipate energy. If 
(6) is not satisfied, then a substituting system with an exact 
solution (7) can be constructed by keeping the same g(X) 
function and the same terms on the right hand side of (4). An 

expression for ~. (A) for such a system can be found by 
requiring 

where E( } denotes the ensemble averaging, which can be carried 
out using Ps(X,X') given in (7). Equation (9) implies that the 
average dissipated energy for the substituting system is the 
same as that of the original system (4). 

It follows from (9), 

a 2 (A) afj afj 
I ([h+TIKijfi-lx'=b(A X)-[h+TIKijfi-lx'=_b(A,X)}dX 

a. (A) ax', ax' 
~'(A)=----------------------------------------------

(10 ) 

where a.(A) and a 2 (A) are the two roots of the equation G(a)=A, 
and b(A,X) =!2A-G(X) . Equation (11) is, in fact a stronger 
sufficient condition, requiring that dissipation energy 
balancing be satisfied for every energy level A. 

Application to Hysteretic Systems 

For hysteretic systems, the h function in (10) is given by 

h = 2CX' + (a-K)X +(I-a)Z (11 ) 

where the hysteretic component Z is described, e.g. by (2) or 
( 3) . For use in (10), Z must be expressed in terms of X and 
X'. Integration of (2) or (3) yields 

g. (X,.s) 
Z = ( 

g 2 (X,.s) 

X' ~ 0 
(12 ) 

X' ::; 0 

where .s is an integration constant. If the excitation were 
deterministic and cyclic, g, would represent one half of the 
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hysteresis loop for increasing X, and g. would represent the 
other half for decreasing X, and each value of the integration 
constant 6 would correspond to a given size of the hysteresis 
loop. Clearly, such a loop size would be determined uniquely 
by the level of the total energy A. Thus, we can also write, 
instead of (12), 

9. (X,A) 
Z = ( 

9.(X,A) 

XI ~ 0 

XI ~ 0 
(13 ) 

A larger A is associated wi th a larger loop and a longer 
period. Under random excitations, A becomes a random process. 
By allowing A to be randomly varying with time, the system 
response is no longer cyclic. Equations (11) and (13) can now 
be substituted into (10). The integrations can be carried out 
either in closed forms or numerically. 

In the special case where the constitutive law of the 
hysteretic system is symmetric, (11) can be simplified to 

a(A) 2' I j2A-2G(X) dX + ! Ar(A) 
-a(A) 2 

41 1 (A) (14) 
a(A) 

n I (K~~ + K~~X')j2A-2G(X)dX 
-a(A) 

where K~~ and K~ ~ are spectral dens i ties of ~ ( 1: ) and ~ ( 1: ) 

respectively, and Ar(A) is the area of the hysteresis loop 
representing the dissipated energy per cycle at an energy level 
A, and where use is made of the fact that a.(A) = - a.(A). The 
potential energy G(X) for a hysteretic system should be 
interpreted as the recoverable energy at a given X. For a bi
linear system [5] 

1 • 
'2(l-K)X 

G(X) {!(a-K)X' + !(1-a)(x+a-1)' a~l, - a~X~-a+2 
2 2 

1 • 1 -(a-K)X + -(l-a) 
2 2 

(15) 
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o 
Ar = ( 

4(I-a)(a-l) 

smooth hysteresis 

1 • 
-(a-K)X 
2 

G(X) ( 

given by (3 ) with n A 1 and f3 

+ !(I-a)(x+x.)' 
2 

-a~x~-x. 

1 • + 8~·(I-a)[I-e-2Y(X+X.)]' -x.~x~a -(a-K)X 
2 

2x. • 
Ar = (l-a)[- - (a-x.) ] 

y 

193 

(16 ) 

= y, 

(17) 

(18 ) 

where x. is uniquely determined for a given amplitude a by 

solving Z(± x.) = o. See [6] for the case f3 ~ y. 

The probability densities for the energy level A and the 

ampli tude a, respectively, can be found readily from (7) and 

(14). Specifically, 

and 

dX 
PS(A) 

a(A) 

2p(A) f 
-a(,,) hA - 2G(X) 

a 

Ps ( a) = 2 I g ( a) I p [" ( a) ] f dX 

-a h,,(a) - 2G(X) 

(19 ) 

(20) 

As indicated, " must be expressed in terms of the amplitude a 

in (20). It is of interest to note that for bilinear systems, 

g(a) and consequently ps(a) are discontinuous. 

Numerical Examples 

computed stationary probability densities of the response 

amplitude are shown in Fig. 1 for the Bouc-Wen model with a = 

0.1, representing a strongly hysteretic system. Two 

nondimensional quantities DIl=/2Kr\l1 and Dl;12Kl;l; are introduced 

to represent the strengths of multiplicative and additive 

excitations. The presence of a multiplicative excitation 
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shifts the peak toward right, thus decreasing the distribution 

for lower amplitudes and increasing the distribution for higher 

amplitudes. However, these effects are significant only when 

the addi ti ve excitation is sufficiently strong. The general 

shape of the probability density depends primarily on the 

relative contribution of the hysteresis components and to a 

lesser degree on the additive excitation intensity. For the 

present case of strong hysteresis (0=0.1), the response 

amplitude is close to being Rayleigh distributed only if the 

additive excitation is either very weak (D~=O.l) or very strong 

(D~=5). In the intermediate range (D~=0.5 and D~=l) the 
amplitude distribution is far from Rayleigh, and in some cases 

it can have two peaks. 

To assess the accuracy of the present approach, sample 

functions were digitally simulated for the wide-band excitation 

processes n(.) and ~(.), and equations of motion were 

numerically integrated to obtain the corresponding sample 

functions of the response [5]. The root-mean-square (RMS) 

values computed from these response sample functions were then 

compared with those obtained from the theoretical probability 

densities. Excellent agreements were found between the 

theoretical and simulated results, as shown in Fig. 2 for the 

case of bi-linear systems. Also shown in Fig. 2 in dotted 

lines are the results obtained from the equivalent 

linearization procedure [7]. 

In the case of moderate hysteresis (0=0.5) the linearization 

resul ts are in good agreement with those from simulation and 

from dissipation energy balancing, but in the case of nearly 

elasto-plastic systems (0=0.1) they deviate far from the 

simulation results in the range of intermediate additive 

excitations. Yet, it is in this range that hysteresis in the 

restoring force plays a dominate role. The large discrepancy 

is attributable to the assumptions in the linearization method 

that the response is of a narrow band, and that the response 

amplitude is approximately Rayleigh distributed. 
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(a) (b) 

FIGURE 2 RMS Response of a Bi-Linear Hysteretic System with C 
= 0.025, K = 0.04; (a) Moderate Hysteresis a = 0.5; 
(b) Strong Hysteresis a = 0.1. Dissipation 
energy balancing, Linearization; 0 !J. 0 
Simulations. 
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Summary 

Preliminary experiments on the interaction of nonlinear impact 
oscillators and linear elastic continua such as strings and 
elastic plates provide evidence for spacial complexity in the 
elastic medium akin to spacial chaos. These models may also be 
paradigms for understanding deterministic sources of machine 
noise. 

Until recently most studies of chaos in elastic systems have 

assumed the existence of a low order attractor. These systems 

have generally been modelled as a projection onto one or two of 

the linear spacial modal functions. Thus these models have 

exhibited temporal chaotic dynamics with spacial coherence. In 

this report we explore the possibility of spacial dynamics in 

elastic continua such as strings and elastic plates. These 

studies have been mainly experimental. We hope these data on 

spacial complexity in solid mechanics will inspire 

theoreticians to explore the possibility of a kind of "spacial 

turbulence" in solid mechanics. In a recent paper, Thompson 

and Virgin (1988) have discussed the idea of spacial chaos in 

the static elastica. Similar work has appeared in reports by 

Meilke and Holmes (1988) at Cornell University. Computer 

studies of spacial complexity and temporal chaos in a chain of 

coupled oscillators have recently appeared by Crutchfield and 

Kaneko (1987) and Umberger, et al. (1989). However, 

experimental evidence of spacial chaos seems to be lacking at 

present. 

Spacial Chaos in Structural Mechanics 

A Simple Paradigm - Semi-Infinite Wave Guide 

Consider a nonlinear oscillator consisting of a mass Mo 

connected to a nonlinear spring which is harmonically excited 
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as shown in Figure 1. For many nonlinear springs, such as a 

cubic spring, or a two-well potential or a bilinear or 

trilinear spring, temporally chaotic motions W(t) can be found 

with positive Lyapunov exponent for given values of the forcing 

amplitude and frequency and initial conditions (see e.g., Moon 

1987). Imagine now a semi-infinite wave guide connected to the 

mass in some benign way so that the vibration of the string has 

negligible effect on the chaotic motion of the mass. 

If the motion of the string u(x,t) is assumed to satisfy the 

classical wave equation with speed co, then the string will 

admit right and left running wave solutions of the form 

u(x,t) f(x-cot) + g(x+cot) 

If the wave guide is semi-infinite or is terminated in a 

characteristic impedance, then we can invoke a radiation 

condition and set g (x+cot) = o. Thus, if the transducer 

between the string and mass is u(o,t) = A W(t), then the motion 

of the string is given by 

u(x,t) = A W(t-x/co) 

Thus a chaotic motion in time [W(t); to S t S t] is stored 

spacially in [u(x,t); 0 S x S co(t-to )] 

This suggests that a Lyapunov exponent in space can be 

approximated by a calculation in the phase space with 
. . au ) f . . coord1nates (u, ax' x or a g1ven t1me t » to. 

If the string is pinned at x = L, then right running waves will 

be reflected as left running waves with negative amplitude. 

Thus, if the chaotic information is stored in a finite string, 

the phase space may be imagined as folded an infinite number of 

times. Conceptually, we could still calculate a Lyapunov 

function in space, but one would have to keep track of the 

thousands of reflections. Practically, however, one only has 

the sum of all these left and right waves, so it becomes 
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difficult to define a Lyapunov function for spacial chaos, but 

the idea appears to be analogous to that of temporal chaos. 

If the wave guide is dispersive, i.e., the wave speed depends 

on the frequency, the chaotic temporal history W(t) will be 

distorted in space, but one still expects a "chaotic" spacial 

pattern in the space (u, ~, x). 

Thus, in problems in which a nonlinear descrete system is 

coupled to a linear hyperbolic system, one should expect to 

find spacial as well as temporal chaos. Since small 

disturbances in solids travel with finite speeds, one should 

expect to see spacial chaos in strings, beams, plates and 

shells when they interact with discrete nonlinear oscillators. 

One would expect to see spacial complexity in such systems when 

the excitation period is smaller than the wave transit time for 

the finite wave system. 

Chaos in the String or Elastic Cable 

The simplest elastic continuum is the string. In experiments 

at Cornell (Moon and O'Reilly, 1989) we have looked at 

nonlinear boundary conditions as well as large deformations in 

the forced vibrations. In one set of experiments we looked at 

the effect of displacement limiting stops on the vibration as 

the amplitude is increased as shown in Figure 2. 

The experiments were carried out near the natural linear 

frequencies with sinusoidal excitation. When the string began 

to hit the stops, the classical modal spacial pattern was 

destroyed, as shown by the disappearance of the node. The 

dynamics had the appearance of traveling waves rather than 

standing waves and the modal pattern or zero displacement 

points disappeared. We have attempted to look at the cross 

corrrelation function between different points along the string 

using two optical measuring cameras. Also, quasi-periodic 

vibrations are often a precursor to the chaotic motions. The 

region of chaotic dynamics is shown in Figure 3. 
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Chaotic vibrations in Elastic Plates - Paper Chaos 

As mentioned above there has been discussion on the existence 

of spacial chaos in the classical elastica. One can also look 

into whether complex spacial patterns can be observed in a two

dimensional elastica. By this we mean a very thin plate which 

can undergo very large deformations. In this work we have 

performed some preliminary experiments on paper and steel 

plates and have observed broadband vibration output with a 

sinusoidal excitation. This problem may have application to 

xerographic and computer printing technology in which paper 

must be moved and deformed simultaneously. 

In this experiment a sheet of paper was supported on one edge 

and allowed to statically deform under gravity in the shape of 

an elastica as shown in Figure 4. When attempts were made to 

find natural frequencies of the paper plate with an 

electromagnetic shaker, no clear resonances were found, due 

perhaps to the large fluid (air) damping. At sufficiently 

large amplitudes, however, broadband chaotic motions could be 

observed with wave-like motions moving from the shaker edge to 

the free edge. This work is still in progress. 

Chaotic Interaction of an Impact Oscillator and a Thin Circular 

£..l..at..e. 

In another study conducted at the Technische Hochschule 

Darmstadt (Moon and Brochart, 1989), the interaction of a 

periodically excited bouncing mass impacting a circular 

aluminum plate 0.5 meter in diameter was examined as shown in 

Figure 5. When the mass was excited into chaotic motions such 

that it hit the plate, accelerometers were used to measure the 

cross correlation between vibrations at the plate center and 

those at various radii from the plate edge. The correlation 

time was found to decrease as one moved away from the plate 

center indicating a loss of coherence between points at 

different motions in the plate (Figure 6). 
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These experiments suggest that machine noise generated by the 

relative motion of machine parts such as gears, bearings, etc., 

may be subject to analysis based on deterministic models for 

chaos. 
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Figure 2. Diagram showing apparatus for studying chaotic 
vibrations of a string with motion limiting stops. 
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Figure 3. Diagram showing regions of chaotic and quasi
periodic motions for the vibrating string with 
motion constraints. Data taken near the second 
natural frequency of the string. 
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Figure 4. Sketch of apparatus to study chaotic dynamics in a 
paper plate bent in the shape of the elastica. 



www.manaraa.com

204 

Microphone 
amplifier --L--r----J 

Accelerometers 

t Signal 
analyzer 

Microphone --

~ ! 
Oscillator Power U(t) 

amplifier __ ~--..>T 

I t 
Electromagnetic 

shaker 

Figure 5. Diagram showing apparatus to study the chaotic 
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Summary 

Vibration and control systems are often influenced by troublesome nonlinear effects 
such as Coulomb friction, backlash, or hysteresis. In this contribution an indirect 
measuring technique of the actual values of those nonlinearities is presented. Based 
on a fictitious model of the time behaviour of the nonlinearities a state observer of an 
extended dynamical system is designed resulting in estimates of the nonlinear 
effects. In the paper the theory of this approach, an illustrative example, and a 
practical application in the position control of robots are considered. The proposed 
method is a successful tool to register indirectly the nonlinear effects of vibration and 
control systems. 

Introduction and Problem Statement 

Vibration and control systems are often influenced by troublesome nonlinear effects 

such as Coulomb friction, backlash, or hysteresis. For the analysis and design of 

those systems certain informations on the nonlinear characteristics are required. 

Sometimes preceding off-line measurements are available, but often direct 

measurements of the nonlinearities are not possible. Particularly, the change of the 

nonlinear characteristics under changes of operating conditions usually cannot be 

measured directly. 

In this contribution an indirect measuring technique of actual values of nonlinear 

effects is presented. Based on a fictitious model of the time behaviour of the 

nonlinearities a state observer of an extended dynamical system is designed 

resulting in estimates of the actual nonlinearities. Due to the theory of estimating 
unknown disturbances of a control system simple measurements of displacements 

or velocities of the vibration system are used to reconstruct additional time signals 

W. Schiehlen (Editor) 
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by a state observer to obtain estimates of the nonlinear effects. According to the 

above-mentioned fictitious model of the nonlinearities the state observer is based on 

the linear part of the vibration system and the linear fictitious model. In spite of this 

linear model, generally good estimates of the nonlinearities are obtained. 

To be more precise the problem is defined in mathematical terms. Applying state 

space notation, the vibration or control system under consideration is described by 

x(t) = A x(t) + N n (x(t)) + b(t) , (1 ) 

y(t) = C x(t) . (2) 

Here x denotes the n-dimensional state vector (consisting of displacement and 

velocity variables in case of a mechanical vibration system), n(x) characterizes the f

dimensional vector of nonlinear functions, A is the n x n-matrix characterizing the 

linear dynamic behaviour, the n x f-matrix N can be interpreted as an input matrix of 

the nonlinearities into the dynamic system, and b(t) denotes the n-dimensional 

vector of control inputs and/or excitation functions. Additionally, y represents the m

dimensional vector of (linear) measurements of the system characterized by an m x 

n-matrix C. To avoid redundant formulations it is assumed 

rank N = f, rank C = m . (3) 

Now, the problem of indirect measurements of the nonlinear effects can be stated as 

follows. Assuming that the system parameters as well as the input and output time 

signals are known, 

(A, N, C) , (b(t), y(t)) are known , (4) 

then it is the object of the procedure presented here to reconstruct the unknown 

nonlinearities n(x(t)) by certain estimates applying state observers: 

A" 
n(x(t) == n(x(t)) . (5) 

The paper is organized as follows. The general theory will be presented in section 2. 

In section 3 a simple example illustrates the procedure. Section 4 is related to a 

practical application of the proposed method to the compensation of Coulomb 
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friction in the position control of industrial robots. Finally, the concluding section 5 

will give some hints at further research work. 

General Theory 

According to the theory of disturbance rejection control, cf. the surveys by Muller 

and Luckel [1,2], the time signals of the nonlinearities are interpreted as "external 

disturbances" which can be characterized by a suitable fictitious model: 

n(x(t) H v(t) (6) 

v(t) ... F v(t) (7) 

The approximation (6,7) may be regarded as a model of the interactions of the 

nonlinearities acting from "outside" to the linear subsystem. It may be also 

considered as an approximate aggregation of the signals of the linear subsystem 

deformed by the nonlinearities. Therefore, usually the model (6,7) will be chosen as 

a reduced order model of these deformed signals. In practical applications the 

engineer will know, how the dominant time behaviour of the dynamical system (1) 

will be. Then the model matrices (F, H) are chosen with respect to this technical 

background of the problem. 

The estimation of the time behaviour of the nonlinearities is based on their 

substitution by the model (6,7): 

[::::] = [; 
NH 1 [x(t)l + [b(t)l, 
F J V(td 0 J (8) 

y(t) .. [c 0] [X(tq . 
V(tU 

(9) 

For this fictitious system the estimation of the states x and the "disturbances" v has 

to be considered. This will be performed by a state observer which is a commonly 

used tool in control theory, cf. [3,4]. The observer essentially consists of a simulated 

model with a correction feedback of the estimation error between real and simulated 

measurements. If for simplicity an identity observer is used, the observer is 

gouverned by the equation 
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(10) 

(11 ) 

The asymptotic stability of the observer can be guaranteed by a suitable design of 

the gain matrices Lx, Lv if the system (8,9) is completely observable, cf. [3,4]. The 

observability of the extended system (8,9) depends on the choice of the fictitious 

model (6,7). To avoid any sensitivity of the observability with respect to the chosen 

model (6,7) the condition 

[
AI-A NJ 

rank 
C 0 

n + f (12) 

has to be satisfied for all complex numbers A, cf. [1,2] (I denotes the identity matrix). 

This requires m ;::: f, i. e. the number of nonlinearities must not be larger than the 

numbers of measurements. 

Using the asymptotically stable observer (10,11) the reconstruction of the time 

signals of the nonlinearities is given by 

,.. 110 " n (x(t)) = H v(t) . (13) 

If one is interested in the characteristics of the nonlinearities then additional 

informations are required about the structural dependences of n on x. If this a priori 

information is available the reconstruction of the nonlinear characteristics is 

determined by 

'" ,. A I n (x) = H v related to x (14) 

Even though the observer (10,11) is asymptotically stable the estimates (13,14) may 

not converge to the true values of the real nonlinearities. To guarantee convergence 

additional sufficient conditions have to be established. For this, the differential 

equations of the estimation errors are considered. Introducing the estimation errors 
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= x(t) - x(t) , 

v(t) - v(t) , 

= H v(t) - n (x(t» 

and the abbreviations 

e(t) = [ ex(t)] 
ey(t) 

the estimation error equation 

e(t) = Ae e(t) + Ne en(t) 

N. - [~] 

209 

(15) 

(16) 

(17) 

(18) 

(19) 

is derived. If the asymptotic stability of (19) can be assured then the reconstructed 

signals (13,14) will converge to the true nonlinearities. These design requirements 

will be sufficiently satisfied by two steps. Firstly, the observer (10,11) has to be 

asymptotically stable, as mentioned above. This is a common design problem in the 

theory of state observers; a lot of procedures is available such as pole assignment 

or filter theory. The author recommends the design of optimal observers according 

to the requirement 

J E { eT(t) e(t) } dt --+ minimum 

° 
(20) 

where it is assumed that the initial conditions xo, Vo are normally distributed with zero 

mean and a certain covariance matrix (for details cf. [5,6]). 

Secondly, the influence of the error en(t) must not cancel out asymptotic stability of 

(19). For this, the inequality of Bellman and Gronwall or Lyapunov's direct method 

can be applied to estimate a bound for the accuracy of the model (6,7), cf. [7]. If the 

error en(t) satisfies 

k 11 e(t) II (21) 

for a sufficiently small constant k, then the error system (19) is asymptotically stable. 

The constant k can be estimated. If 

II exp(Aet) 1\ ~ c e-hl , It Ne II ~ ne (22) 
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then 

h 
k < (23) 

is obtained by the Bellman-Gronwall inequality. Another bound can be derived by 

using the Lyapunov function V(xe) = xeT Pe Xe where Pe and Oe are positive definite' 

matrices satisfying the Lyapunov matrix equation 

AeT Pe + Pe Ae = -Oe . (24) 

The derivative of V(xe) for the differential equation (19) still remains negative definite 

as long as 

k < 
q 

2s 
(25) 

where q is the smallest eigenvalue of Oe and s is the largest singular value of P eNe. 

Therefore, if the fictitious model (6, 7) is suitably chosen, and if the system (8, 9) is 

completely observable, then the observer (10, 11) leads to good estimates (13,14) 

of the nonlinear effects. 

illustrative Example 

The example consists of a simple 1-dof vibration system including Coulomb friction: 

z(t) + f (z(t» + z(t) = a cos rot (26) 

where 

{ 
. , z;c 0 , sgnz 

f(z) = sgn fa , z=o , ~sl > 1 , 
fs , z=o , Ifsl < 1 

(27) 

with the reaction force fs in case of stick friction. The measurement is assumed to 

be 
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y(t) = z(t) . (28) 

In this case, all steps of the method can be evaluated analytically. The condition (12) 

of robust observability is satisfied. 

According to the proposed method the choice of the fictitious model (6, 7) has to be 

effected. Because of (27) the time signal of the nonlinearity can be considered as 

piecewise constant leading to 

f(z) '" v , V = 0, i. e. HI = 1 , Fl = 0 . (29) 

But in the case of stick friction the reaction force will also include a harmonical signal 

with frequency co. Therefore, another fictitious model makes sense, too: 

(30) 

Using the first fictitious model the observer (11) is easily written as 

(31 ) 

with the observer gains h, 12, Ia. The characteristic polynomial of the system matrix 

Ae of (31) reads 

(32) 

such that the procedure of pole assignment can be easily applied to design the 

observer. 

The reconstruction of the characteristic (27) by an estimated signal is performed 

according 
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(33) 

In the following figures typical results are shown for different values of the observer 

gains. Always an amplitude of a = 1.5 and frequencies WI = 0.3 or ~ = 1.25 of the 

excitation are assumed. Fig. 1 shows the reconstruction of the characteristic of the 

nonlinearity (27) by an observer (31) with small observer gains. Obviously the 

observer is designed too slow such that an essential phase shifting of the estimates 

appears. If the observer gains are increased leading to a much faster observer the 

reconstruction matches the characteristic (27) very well as shown in Fig. 2. The 

influence of the excitation frequency W is also demonstrated. The observer design 

must be related to this excitation signal too, although the error dynamics (19) are 

independent on it. 
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Fig. 1. Characteristic of nonlinearity (27) reconstructed by (33) with observer gains 

11=24.6.12=101, Ia=- 200 using model (29) 
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Fig.2. Characteristic of nonlinearity (27) reconstructed by (33) with observer gains 

11=280,12=17599, ia=-320000 using model (29) 
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In Fig. 3 a result is shown in the case of the second fictitious model (30) requiring an 

observer with 5 gains. While the reconstruction is very convincing in the case of the 

frequency 0)1, in the case of the frequency CO:z a large overshooting for very small 
velocities is observed. To overcome these undesired peaks the observer has to be 

designed aperiodically. 
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Fig. 3. Characteristic of nonlinearity (27) reconstructed by (33) with observer gains 

11=360, 12=41599, 13=-1/0)2 512 . 106, 14=-2175800 + 1/0)2 512 . 106, 15=-53719400 

using model (30) 

This simple example illustrates very well the applicability of the proposed method to 

reconstruct nonlinear effects. But the quality of the indirect measurement depend 

strongly on the choice of the fictitious model as well as on the design of the 

observer. 

Application 

The proposed method of indirect measurement of nonlinear effects was successfully 

applied to design a highly accurate position control of an elastic industrial robot 

which is effected by nonlinear Coulomb friction within the electric drives. 

Conventional control algorithms yield steady-state inaccuracy, untimely stops of the 

motion or limit cycles depending on the type of controller. Therefore, a linear 

feedback control system was designed by Ackermann und Muller [8 - 10] applying 
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disturbance rejection control technique. By this design method the effects of 

Coulomb friction are compensated. Coulomb friction depends on velocity, actuating 

force and normal pressure. Additionally there are two different regions of operation: 

there are sliding and sticking modes dependent on the ratio of friction due to normal 

pressure and actuating force. Although the nonlinear characteristic of the multi

valued function of friction is very complicated, the simple model (29) of piecewise 

constant functions was used to model approximately the time signals of the 

Coulomb friction. The reconstruction of these signals was realized by a reduced

order functional observer instead of an identity observer (10, 11) to keep the amount 

of calculation and hardware realization low. Therefore, direct measurements of 

Coulomb friction are not necessary and the load depending friction is also 

reconstructed automatically. Due to the fast dynamic behaviour of the observer the 

friction could be estimated very fast. These estimates could be used to counteract 

the Coulomb friction, i.e. to compensate the effects of Coulomb friction, using the 

theory of rejection control. This rejection control algorithm was tested under real 

conditions at an experimental robot with three rotational degrees of freedom 

showing the efficiency of the proposed method of indirect measurement and of the 

designed control. Untimely stops (due to sticking) or limit cycles are completely 

avoided. The new position control of the elastic industrial robot is faster and more 

accurate than conventional control and the robot dynamics are considerably 

improved. The details of all theoretical and experimental investigations are found in 

the report of Ackermann [10]. 

Conclusion 

In this contribution it was proved that the theory of state observers permits to 

reconstruct nonlinear characteristics in vibration and control systems. The proposed 

method is a successful tool to measure indirectly unknown nonlinear effects. An 

essential advantage of this method is its adaptation to changes of the nonlinearities 

during operation. E.g. the dependence of friction on load and temperature is 

automatically included in the reconstructed signals. Although the convergence 

properties have been shown, the successful application of the proposed procedure 

depend essentially on the suitable choice of a fictitious model (6, 7) of the time 

behaviour of the nonlinearities and on a good design of the state observer (10, 11). 

Here are still open research problems to improve the proposed method. If the 

procedure converges then good estimates (13) of the time signals of the 

nonlinearities are obtained. To get additionally good estimates (14) of the nonlinear 

characteristics, actually the a priori information of the dependence of the 



www.manaraa.com

215 

nonlinearities on the state variables is required. It would be valuable to generalize 

the proposed method to reconstruct the nonlinear functions without this knowledge 

on the structural dependence. 
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Summary 

Chaotic motion of a harmonically excited nonlinear system with Coulomb 
damping is investigated in a range of excitation frequencies.Phase plane 
diagrams, Poincare 'maps , time histories and power spectral densities are 
obtained and Lyapunov exponents are computed.Period doubling route to chaos 
is observed in certain frequency ranges which is explained using harmonic 
balance analysis. The stability of the strange attractors with respect to 
initial conditions is investigated by interpolated cell mapping technique. 

Introduction 
In recent years, the study of chaos in nonlinear dynamical systems has 

emerged as a very active area of research in physics, mathematics and 

engineering. Chaos may be described as a bounded,aperiodic random like 

motion exhibited by deterministic nonlinear systems characterized by its 

sensitivity to initial conditions. Classical studies of nonlinear 

oscillators mainly concern with the stability and domains of attraction of 

steady state solutions corresponding to equilibrium points,periodic and 

quasiperiodic motions, which when stable are associated respectively with 

point, limit cycle and torus attractors having simple geometric structures. 

Chaos, on the other hand represents a strikingly different type of steady 

state behaviour associated with strange attractor having no such simple 

geometric structure. Not all nonlinear systems exhibit chaos, nor does 

chaos occur for all combinations of system parameters and initial 

conditions for a given nonlinear system. Indeed, no general conditions 

have been clearly established as yet to apriori identify chaos for a given 

set of parameters and initial conditions.Mostly, chaotic motion is 

identified by numerical simulation of system responses and inspection of 

phase plane plots, which are of complicated pattern, Poincare' maps which 

show strange attractors and time histories which are aperiodic. Chaos is 

also characterized by positive Lyapunov exponents, continuous power spectra 

and fractal dimensions. 

Most of the work in the area of chaos in mechanical systems is on the 

Duffing's oscillator with linear viscous damping. The dissipation mechanism 
in a large class of problems is of the dry friction type. Awrejcewicz[l] 
*-Presently-at-Department-of-AeronauticaI-Engineering:-MIT:-Madras-44------
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has briefly reported chaotic motion in a nonlinear system with Coulomb 

damping. The present paper presents a detailed analysis of chaos in a 

harmonically excited nonlinear oscillator with cubic stiffness and damping 

terms as well as Coulomb damping.Chaos is observed in a range of exciting 

frequencies. The phase plane plots and the Poincare' maps which show strange 

attractors are varied in appearance in the different frequency ranges.In 

certain frequency ranges the route to chaos is through period doubling. A 

harmonic balance analysis is carried out on the lines of Szemplinska 

Stupnika[2] to determine regions of subharmonic motion and relate the same 

to the period doubling sequence.Lyapunov exponents and power spectra are 

computed. An interpolated cell mapping technique[3] is used to investigate 

the stability of strange attractors with respect to initial conditions. 

Equation of Motion 
Figure 1 shows a single degree of freedom mass m with displcement x sliding 

relatively with respect to the belt moving with velocity v. The mass is 

assumed to be supported by a spring with linear stiffness k1 and cubic 

stiffness k2 and a damper with cubic damping coefficient c2 and a negative 

linear damping coefficient c1• Dry friction is also present between the 

mass and the belt with friction coefficient~. The mass is subjected to 

harmonic excitation of amplitude Po and frequency ~. 

of motion of the mass is given by 
" . 3· 3 . 

mx+c 2(x-v) -c 1(x-v)+k1x+k2x +~ sgn(x-v)=Pocos ~t 

where g is the acceleration due to gravity. 

Equation (1) can be expressed as 

x = 2 

Fig.1 Nonlinear Oscillator on a moving belt 

The equation 

(1) 

(2) 

(3) 
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Phase Plane Plots and Poincare' Maps 
3 For the parameters values a = 0.05 sec/m, ~ = 0.02 sec/m ,r1 =0, r 2 = 1000 

(m sec)-2, ~ = 0.6, v = 1 m/sec (2) and (3) are numerically integrated in 

the frequency range 2 ~ w ~ 32 by a fourth order Runge-Kutta method with a 

time step of ~t = T/200 with T = 2n/w. Whenever the velocity of the mass 

is in the range of 0.97 < x2 < 1.03 ~ finer time interval of ~t, is used to 

account for the directional change in the Coulomb force. The time steps 

were chosen such that further decrease in the steps did not significantly 

change the integrated values of displacement and velocity. 

The phase plane plots and Poincare' maps which are stroboscopic projection 

of the phase points corresponding to the forcing period T are obtained for 

different values of wand plotted. Figure 2 shows the phase plane diagram 

and Poincare'map for w = 2 which are typical of chaotic motion,obtained by 

integration upto 1000 periods with initial conditions xl = 0.001 and x2 = 
0.0. The phase plane corresponds to the final 20 periods of integration 

and the Poincare' map contains 800 points leaving the initial 200 points. 

The phase plane is of complicated pattern and the Poincare' map shows 

strange attractor behaviour. The equations of motion are also integrated 

with other initial conditions and in each case the phase plane diagrams and 

Poincare' maps had the same appearance. The phase plane diagram resembles 

that for a chaotic stable Duffing I s oscillator. For increasing values of 

the exciting frequency w, the system exhibits chaotic behaviour mainly in 

three frequency ranges even though the system motion is observed to change 

from periodic to chaotic motion in other frequency ranges with very narrow 

frequency windows. 

0.70 

~ 

~ -0.30 

-1.30 
-0.15 -0.05 0.05 0.15 

DISPLACEMENT 

0.90 

-0.10 

-1.10 
0.08 0.11 0.13 0.16 

DISPlACEMENT 

Fig. 2. Phase plane plot and Poincare' map for w = 2 

In the frequency range 15 ~ w ~ 16.3, 23.3 ~ w ~ 23.65 and 24.5 ~ w ~ 27.0 

the motion is chaotic. Typical phase plane diagrams and Poincare' maps in 
these frequency ranges for w = 15, W = 26 are shown in Figures 3 and 4 
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respectively. In all these cases the route to chaos is through a period 

doubling sequence as the frequency is decreased from a higher value. For 

example, for w = 16.35 a period 2 motion, for w = 16.25 a period 4 motion 

were obtained. Similarly in the frequency range 23.3 $ w $ 23.65, for w = 
24 a period 4 motion and w = 23.7 a period 8 motion and in the frequency 

range 24.5 $ w $ 27 for w = 30 a period 2 motion and for w = 27.4 a period 

4 motion were obtained. In these frequency ranges the effect of Coulomb 

damping is evident from the flattening of the phase plane trajectories 

corresponding to the relative velocity between the mass and the belt 

becoming zero. 

1.00 

~ 
g 
~ -O.SO 

-2.00 
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Fig. 3. Phase Plane and Poincare' map for w = 15 

1.00 
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-1.00 
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Fig.4. Phase Plane and Poincare' map for w = 26 

Harmonic and Subharmonic Solutions and Their Stability 

0.05 

0.10 

The period doubling route to chaos can be explained by performing a 

harmonic and subharmonic analysis using the harmonic balance method and 

analysing the stability of the solutions. Assuming a solution of the form 

xo(t) = a + b cos(wt+p) (4) 

and substituting in (1) and equating coefficients of constant, cos wt and 

sin wt terms in either side the following nonlinear algebraic equations for 

the amplitudes a and b and the phase angle p are obtained. 
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(5) 

3 3 2 33 22 
{golV - g{3v - '2g{3v(bw) + r 2a + 211ab} ± W o (6) 

gab w - 3gv2b - 3g{3ab3w3 
tan rp ----'2------2------)----)---

-bw + 3r 2a b + 4 r 2b 
(7) 

Equations (5) and (6) are solved by using a two dimensional Newton-Raphson 

algorithm the results of which are shown in Figure 5. The two curves shown 

which are close to each other correspond to ± W in (6). The dotted 

portions of the curves represent the unstable branch of the solution. The 

points of vertical tangency are w = 14.5 and w = 18.8 for +W and w = 14.8 

and w = 19 for -w which are again very close. 

As the period doubling occurred corresponding to the non resonant branch of 

the harmonic amplitude curve ,the stability of the harmonic motion can be 

examined with respect to build up of ~ sub harmonic motion in these 

frequency ranges. Assuming a perturbed solution in the form 

(8) 

and substituting in (1) the following variational equation is obtained for 

the perturbed motion 6x(t). 

6x +g(-ol 6~ + [1{3(~0-V) 6~+3(~0-V)6~2+6~3} + /-l{sgn(~0+6~-v) 

o (9) 

The stability of the perturbed solution can be examined considering the 

linearized form of (9) 

... . 2 2 
6x + 6x{-ga + 3g{3(xO-v) } + 3r 2 xo 6x = 0 (10) 

and using Floquet's theory.Assume a solution of the form for (10) 

vt 6x(t) = e b1/ 2 cos(wt/2 + e ) (11) 

which is unstable for v real and positive. Substituting (ll)in (10) with v 
1 

= 0 and using the harmonic balance method with respect to the '2 subharmonic 

we obtain the condition for bifurcation from period 1 to period 

[ ~ {- ga + 
2 

2 1 2 2 2 3g{3 (v + '2(bw) }] + [ 3r 2(a + 

3 2 2 - [3r 2ab - 2 g{3vbw] = 0 

2 
!b2) _ ~ ]2 
2 I, 

2 motion 

(12) 

The values of a and b obtained from (6) and (7) are substituted in (12) 

yielding the bifurcation points respectively as w = 15.037 and 31.69 and 
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w = 15.608 and 30.527 for ±~ in (6) which are marked as points A and B for 

+ ~ and A' and B' for - ~ in Figure 5. Between the bifurcation points the 

harmonic solution is unstable with respect to subharmonics and hence the 

period 2 solutions begin to appear in these frequency ranges. Likewise the 

period 2 solutions may bifurcate into period 4 solution when they become 

locally unstable with respect to period 4 solution. Thus the period doubling 

can be explained in terms of successive bifurcations. 

Assuming a solution for the ~ subharmonic of the form 

(13) 

and substituting in (1) and applying the harmonic balance method one can 

obtain a set of equations after comparing the harmonic and subharmonic 

terms on either side ,which when solved gives the amplitudes a1,b1,d1 and 

Pl' The amplitude d1 is plotted in Figure 6 separately for +~ and -~. 

0.38 0.16 

0.30 0.12 

.0 

" t .0' 0.08 

A 0.04 

B B 
0 0'0 4 8 12 20 24 28 32 35 _CAl -w 

Fig.5. Harmonic Response Fig.6.Subharmonic Response 

It can be noted that the frequencies relating to the beginning and end of 

the subharmonics correspond to the stability limits obtained previously. 

Power Spectral Density and Lyapunov Exponents 

As chaos is characterized by aperiodic and random like motion the power 

spectral density is continuous. Typical time history and power spectral 

density for w = 26 is shown in Figure 7. 

Lyapunov exponent is a measure of average exponential divergence or 

convergence of nearby trajectories and an indicator of bifurcations in 

nonlinear dynamical systems. Negative Lyapunov exponents signal periodic 

motion whilst at least one positive Lyapunov exponent indicates chaos. The 
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nonlinear system can be represented by a set of vector differential 

equations 

(14) 

The vector field f in(14) generates a flow ¢t(x) on a manifold M which is a 

solution of(14).Considering the manifold M of two neighbouring trajectories 

starting from Xo and xo+~xo' the tangent vector w e T_M,where T_M is the 
x x 

tangent space to M at x is described by the linearized system of equations 

w = [~f(x, t)]w 
where ~f(x,t)= of(x)/oxlx x(t)is the Jacobian matrix. 

dimensional Lyapunov exponent is defined as 

A(XO'WO) = ~!moo [ i ~_~l!l_~ ) 
II Wo II 

(15 ) 

The one 

(16) 

The Lyapunov exponents are computed using a Gram-Schimdt orthonormalization 

procedure as given by Wolf et.al[4) and they are AI= 1.97, A2= -1.74, A3=o 

for w = 26. The convergence of the positive Lyapunov exponent is shown in 

Figure 8 as a function of time. 
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c 
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234.00 236.50 239.00 241.50 0.00 20.00 

TIME FREQUENCY 

Fig.7. Time History and Power Spectral Density for w = 26 

Interpolated cell mapping 

Different initial conditions can lead to multiple sets of steady state 

behaviour in nonlinear systems. Determination of the different solutions 

for all initial conditions in a region of the phase space by numerical 

integration is extremely time consuming. Tongue and Gu[3) have proposed an 

interpolated cell mapping(ICM) technique in which the phase plane is 

discretized into a large number of cells. The equations are inlegrated for 

a small time (one forcing period) with the state of each cell centre as 

initial conditions. The terminal point after integration upto one period 

for each cell centre is recorded and located with respect to the centres of 

four adjacent cells surrounding it. The final position corresponding to a 
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large number of periods is determined by an iterative scheme of 

interpolation between the final locations of the trajectories at the end of 

one period emanating from these four corners. This method is both time 

saving and reasonably accurate. 

The Poincare' maps are obtained using the ICM technique for w = 2,15 and 26 

with the phase plane divided into 100xlOO cells. For all the cells in 

the three cases we obtained the corresponding strange attractor. The· 

Poincare' map for w = 26 is shown in Figure 8 which is as good as obtained 

by numerical integration(Fig.4). 
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Fig.8. Lyapunov Exponent(w 

Conclusion 
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Fig.9.Poincare' map by ICM(w 26) 

Chaotic motion of a harmonically excited nonlinear oscillator with Coulomb 

damping is investigated by numerical integration. A period doubling route 

to chaos is identified in different ranges of excitation frequency. From a 

subharmonic motion and stability analysis it can be concluded that period 

doubling is due to a build up of higher subharmonics of even order. 

Chaotic motion is also confirmed by computation of Lyapunov exponents and 

power spectrum. The strange attractors are shown to be stable with respect· 

to initial conditions by the interpolated cell mapping technique. 
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Abstract 

The influence of two-to-one internal or autoparametric resonances on the nonlinear 
response of metallic and composite structures subjected to a harmonic excitation has 
been investigated theoretically and experimentally. The experimental observations 
are in good agreement with the theoretical predictions. When the excitation fre
quency is near the natural frequency of the second flexural mode, the autoparametric 
resonance gives rise to the saturation phenomenon and two-period quasi-periodic 
and chaotically modulated motions. 

Introduction 

We conducted experiments with a metallic structure which consisted of two light

weight steel beams and two concentrated masses, as shown in Figure 1. Although the 

model has an infinite number of modes of vibration, thE' lower two modes are well 

separated from the other modes so that at low excitation frequencies, the structure 

can be regarded as a two-degree-of-freedom system. The first two modes of the 

structure are flexural modes and they are shown in Figure 1. Denoting the undamped 

Figure 1. Metallic structure and accompanying flexural mode shapes. Beam 1: 1.68 
mm x 12.83 mm x 154.51 mm, p, = 0.162 g/mm. m, = 31.1 g; Beam 2: 0.56 
mm x 12.80 mm x 152.40 mm. p, = 0.0498 g/mm, m, = 40.0 g; d = 84.18 
mm. 
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Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
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mod'es of vibration as 4>,(r) and 4>ir) , we express the displacement w(r, t) at any lo

cation r and time t as 

(1) 

where u, and U2 are the generalized coordinates of the motion. Substituting equation 

(1) into the governing partial differential equations and the boundary conditions and 

(2) 

(3) 

where the highest order of terms retained is quadratic. Here, the Wi are the circular 

natural frequencies, the J.l.i are the modal damping coefficients, F, G, hi)' and n are 

parameters which depend on the excitation, and 0, and III are constants that depend 

on the values of the concentrated masses and the dimensions and properties of the 

beams. Equations (2) and (3) have inertial quadratic nonlinearities and harmonic 

excitation terms. They have the same form as the equations governing a variety of 

other physical systems, such as ships, shells, arches, and surface waves in a closed 

basin [1]. Hence, these equations can be used to predict the qualitative behavior of 

many physical systems. 

In the current article, we consider the resonant excitations n""wl in the presence of 

a two-to-one internal resonance w2~2w,. However, the length of the article permits 

us to treat only the case n~W2 in some detail. Sethna [2], Nayfeh, Mook. and 

Marshall [3], Yamamoto, Yasuda, and Nagasaka [4]. Hatwal, Mallik. and Ghosh [5] and 

Haddow, Barr. and Mook [6] and a few others [1] studied special forms of the current 

problem. Nayfeh et al. [3] found a saturation phenomenon. which was experimentally 

verified by Haddow et al. [6]. Yamamoto et al. [4] observed modulated motions in their 

analog-computer simulations. while Hatwal et al. [5] reported experimental observa

tions of chaotic responses at moderately high excitation levels. The case n"",w, has 

been considered by Miles [7] and several others [1]. Miles [7] showed theoretically 

that quasi-periodic and chaotic motions are possible for some excitation parameter 

values. In this case, Nayfeh and Zavodney [8] experimentally observed modulated 

motions. 
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Analysis 

We describe the internal and external resonances by the relations w, = 2w, + a, and 

.Q = w, + a, ' where a, and a, are small detuninq parameters. For weakly nonlinear 

vibrations, using the method of multiple scales, one finds that to the first approxi

mation the structure's response is [9] 

where the amplitudes an and phases Pn are governed by 

(5) 

(6) 

(7) 

(8) 

(9) 

Here, 

Periodic solutions of equations (2) and (3) correspond to the fixed points of equations 

(5)-(9). They are obtained by setting 8, = 8, = y, = y, = O. Similar equations describing 

the evolution of the amplitudes and phases can also be obtained for the case of pri

mary resonance of the first mode [9]. Equations (5)-(9) are used to determine the 

stability of the fixed points. 

The theoretically predicted amplitude-response curves exhibit the saturation phe

nomenon [9]. As a control parameter, such as the excitation amplitude or frequency, 

is varied, a fixed point loses its stability in one of two ways. First,a real eigenvalues 

moves into the right-half of the complex plane along the real axis, resulting in a jump. 

Second, a pair of complex eigenvalues crosses the imaginary axis transversely and 

with a nonzero speed into the right-half plane. The value of the parameter corre

sponding to this crossing is called a Hopf bifurcation value. Figure 2 shows theore

tically determined curves in the ~, -~, plane corresponding to Hopf bifurcation for 

no = Iln/IN = 0.02, 0.04, and 0.06. As the parameters ~n = an/IN are varied to 
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cross the bifurcation curves, the nonlinear periodic solution loses stability and mod

ulated motions occur in the region enclosed by the bifurcation curves. Inside this re

gion, periodically modulated and chaotically modulated motions occur. There is also 

a period-doubling sequence leading from the quasi-periodic motions to the chaotic 

motions [10]. 

1~~--------------~---t 

0.0 "\---,---,,---r----.--...--t 
-0.5 0.1 

Figure 2. Bifurcation curves across which the real part of a complex conj~gate pair 
of eigenvalues changes sign (it is positive inside the curves) for Jln = 0.02, 
0.04, and 0.06. 

Experiments 

The experimental set up and procedure is as described in [11]. The first two linear 

resonant frequencies of the metallic structure shown in Figure 1 are 8.13 Hz and 16.44 

Hz. The responses were analyzed by using Fourier spectra, Poincare maps, time

dependent modal decompositions, and dimension calculations [11]. Figure 3 shows 

experimentally observed amplitude-response curves. The symbols a; and a; corre

spond to the amplitudes of the first and second flexural modes, respectively. The 

point where periodic motion ceased to exist is labeled Hopf bifurcation and the ob

servations made during forward and reverse sweeps are marked by circles and tri

angles, respectively In Figures 3 and 5. As we increased the excitation amplitude 

from zero, a; increased linearly while a; remained trivial, in accordance with linear 

theory. As we increased the excitation amplitude above a threshold (about 7.8 mili 

g's), a; remained constant while a; increased nonlinearly; that is, the second mode 

saturated and the extra input energy spilled over into the lower mode. As we in

creased the excitation amplitude beyond a second threshold, the saturated response 

lost its stability and we observed amplitude- and phase-modulated motions. The ex

perimentally observed frequency-response curves are in good agreement with the 
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theoretical predictions [111. Figure 4 shows the response spectrum for different 

excitation frequencies f in a region where modulated motions were observed. Figures 

4a to 4c correspond to periodically modulated responses. As we go from Fig. 4a to 

Fig. 4c, subharmonics of the modulation frequency appear in the spectrum. In fact, 

the modulation period doubles as we go from Fig. 4a to Fig. 4b. Figures 4d and 4e 

correspond to a chaotically modulated response for which the pointwise dimension 

was determined to be 2.748. The chaotically modulated response was observed at an 

excitation level of about 33.00 mili g's (r.m.s value). Poincare maps and results of 

time-dependent modal decomposition analysis were found to be consistent with the 

observed frequency spectra. 

In an experimental study of the response of the structure during primary resonant 

excitations of the first mode [121, we found two-period quasi-periodic and chaotically 

modulated motions. However, unlike the previous case we did not find any doubling 
in the modulation period in the transition from quasi-periodic to chaotically modulated 

motions. In both cases, the chaotically modulated responses were observed at very 

small excitation levels. Also, the excitation levels needed to produce chaotic motions 

during primary resonance of the lower mode (about 150.00 mill g's r.m.s) were found 

to be higher than those required during excitation of the second mode. 
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Figure 4. Spectra of the response on a log scale: a) f = 16.36 Hz. b) f = 16.37 Hz. c) 
f = 16.41 Hz. d) f = 16.44 Hz. and e) f = 16.44 Hz. We note the subhar
monies of the modulation frequency appearing in the spectrum as we go 
from a) to b) to c) and broadening around the carrier frequencies in d) and 
e). 

Recently. we conducted experiments with a structure made of two light-weight 

glass/epoxy composite beams and two concentrated aluminum masses (a model 

similar to that shown in Figure 1). The first three modes of oscillation of the structure 

are well separated from the other modes and their linear resonant frequencies are 

5.84. 8.67. and 17.64 Hz. The first and third frequencies correspond to the first and 

second flexural modes while the second frequency corresponds to the first torsional 

mode. In this case, there is a two-to-one internal resonance between the second 

flexural and first torsional modes and a three-to-one internal resonance between the 

two flexural modes. The modal interaction due to the two-to-one internal resonance 

gives rise to the saturation phenomenon. periodically modulated motions. and cha

otically modulated motions. Also, the modulation period doubles in the transition from 
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periodically to chaotically modulated motions. The chaotic motions in this case were 

observed at an excitation level of 40.00 mili g's (r.m.s value). Figure 5 shows the 

amplitude-response curves for the composite structure. Here, the symbols a; and a; 

correspond to the amplitudes of the second flexural and first torsional modes, re

spectively. The composite structure exhibits the saturation phenomenon and its 

breakdown to modulated motions like the metallic structure. However, the responses 

in this case are nonplanar due to the presence of the torsional mode. The exper

imental study of modal interactions in the composite structure is discussed in detail 

in [13]. 
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Figure 5. Experimentally obtained amplitude-response curves for the composite 
structure when the excitation frequency is held constant at 17.53 Hz: 
periodic. _._._. modulated --
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Nonlinear Oscillations of Structures Induced 
by Dry Friction 

1. Introduction 

K. Popp and P. Stelter 

Institute of Mechanics 
University of Hannover 

Self-sustained oscillations due to dry friction often occur in engineering systems, cf. 
Magnus (1). One example, the phenomenon of machine tool chattering which deteriorates the 
production quality and increases the tool wear is - at least partly - caused by friction forces 
with a decreasing characteristic. Another phenomenon is the curving noise of tram wheels, in
duced by nonlinear slip forces, which annoys passengers and city dwellers. Recent investigations 
of oscillations induced by drj friction show that beside the well-known limit cycle behaviour, 
chaotic motions are also possible, depending on the system parameters. 

The aim of this paper is to investigate regular and chaotic motions of simple multi-body and 
continuous mechanical systems under self-excitation due to dry friction, in order to show the 
parameter dependencies and routes to chaos. Emphasis is laid on experiments which allow a 
comparison with numerical results. Here, the noise in the measurements can create problems. 

Dry friction appears in two different phenomena in nature: j) As a resistance against the 
beginning of a motion from equilibrium (stick mode). ii) As a resistance against an existing 
motion (slip mode). The friction resistance is a constraining force in the stick mode and an 
applied force during the slip mode. In an oscillatory motion both phenomena show up, resulting 
in a stick-slip mode. Since the friction characteristic consists of two different parts with a non
smooth transition, one has to deal with a system of variable structure where the resulting 
motion shows a non smooth behaviour. Other examples of this type are systems with play, 
stops, impacts, hysteresis or delay. It is well-known that variable structure systems can exhibit 
chaotic behaviour. Engineering problems where chaos was found numerically and / or experi
mentally have been investigated by Moon, Shaw (2) (vibrating beam with an amplitude constrai
ning stop), Hendriks (3) (impact print hammers in a matrix printer), Szczygie/ski (4) (rotor 
touching a boundary), Kaas-Petersen, True (5) (lateral motion of a railway bogie), Pfeiffer! 6) 
(rattling gear drives), Pai"dousis et.al. (7) (constrained pipe conveying fluid). Unfortunately, this 
type of system cannot be analyzed by methods which require certain smoothness assumptions 
on the nonlinear functions involved. For instance, the common methods for calculating Lyapunov 
exponents do not work. Here, new ways have to be paved. 

There exists a rich literature on chaos in self-excited systems with smooth nonlinearities, 
cf. Thompson, Stewart (8), Abraham, Shaw (9), Kunick, Steeb (10). However, in case of self
excitation due to dry friction only a few hints for chaotical behaviour can be found in (11), Fing

berg (12), Grabec (13). The present paper intends to show more. 

2. System description 

In the systems under consideration, self excitation is induced by the friction force of a 
running belt, acting on the structure. Four models are investigated, two discrete and two 
continuous, as shown in Fig. 1. 

w. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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The two discrete systems are investigated numerically only. They serve as simple model 
problems to show different phenomena, parameter dependencies and routes to chaos. The two 

continuous systems are investigated experimentally as well as numerically. The aim of the 

experiments performed are: j) to get evidence of chaotical behaviour, ii) to develop analysis tech

niques applicable in presence of noise, and iii) to gain data for comparisons with numerical re
sults. Important questions which should be answered by means of experiments are: How to de
velop simple models for continuous systems which allow us to describe chaos? How to separate 
measuring noise from deterministic chaos? 

a) b) c) d) 

Fig. 1: Discrete and continuous models of systems which show friction induced self sustained 
oscillations a) A single-degree-of-freedom oscillator with external harmonic excitation, b) a 
two-degree-of-freedom spring-mass-damper-system, c) a cantilever beam as a one-dimen
sional continuous system, d) a thin centrally fixed plate as a two-dimensional continuous system. 

Self-excitation due to dry friction is only possible if the friction force has a decreasing 

characteristic, cf. [1]. Thus, for numerical simulations the following model for the friction force 

FR has been used, see also Fig. 2: 

applied force, (1 ) 

constraining force, (2) 

(3) 

Ilo = 0.4, Il, = 0.1, 0: = 0.01 s2/m2, A= 1.42 slm, 

where v r denotes relative velocity, F N normal force, and Il( v r) the velocity dependent friction 

coefficient. 

.2 

Fig. 2: Friction force with decreasing characteristic 
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The equations of motion for model a) read in nondimensional state space notation: 

x,' = x2' 

x; = - x, + [FR(-VO) - FR(vr)]tc + UOcos(xl ), (4) 

x~ = 11, 

where m means mass, c spring stiffness, Vo belt velocity, Uo excitation amplitude and n excit
ation frequency. The parameter values (initial conditions) are, if not specified otherwise: 
vo= 1.0 mis, FN/c = 10.0 m, uo= 0.5 m, Wo = 1.0 rod Is, 11 = 2.1, (x,(O) = 0, x2(0) = 1.0 m/s) 

Similarily, for model b) we have: 

x; = x2' 

x~ = ~{-(1+lC)X, - 20(1+o)x2 + Xl + 20x4 + [FR(-VO) - FR(vr,)]tc2}, 

x; = x4 ' 

x~ = x, + 20 ~ - ~ - 20 x4 + [~(-vo) - ~(vr2)]tc2' 

(*)' = d(*)/dt, t = w2t, w2 = {c/m2 ,,,( = m/m2, lC = c/c2, 0 = d/d2, 

0= d/(2M)' vr2 = W2X2 - vO' vr2 = W2X4 - vO. 

(6) 

The meaning of the parameters can be seen from Fig 1 b). The parameter values (initial conditi
ons) are, if not specified otherwise: Vo = 1.0 mis, FN/c2 = FN/c2 = 20.0 m, w2 = 1.0 rad/s, 
(x,(O) = xl(O) = 0, x2(0) = x4(0) = 1.0 m/s). 

3. Numerical results for discrete models 

The simulation results for models a) and b) have been visualized by means of time histories, 
phase-plane plots, Poincare -maps and frequency spectra, while bifurcation diagrams show the 
parameter dependencies. Because of lack of space only some results will be shown here. 

The results for model a) are given in Fig. 3, and 4. Fig. 3 shows the bifurcation diagram 
depending on the frequency ratio 11 together with some phase-plane plots. Chaos occurs in 
certain frequency bands which are separated by bands with p-periodic solutions of order p= 1 
to at least p = 6. The bifurcation diagram depending on the normal force FN looks similar. Fig. 4 
shows the chaotic solution for 11 = 2.1625 in the three-dimensional state space as well as two 
Poincare sections (xl = 'lt/4 and xl = 5'1t/4) which exhibit a Cantor set like structure. Obviously, 
the stick mode captures the periodic motions as well as the chaotic ones. Thus, all phase-plane 
plots are bounded by a line x'=vo=const. Further investigations show that the transition into 
chaos in the frequency range 0.9 ~ 11 ~ 0.96 is similar to the intermittency route described by 
Pomeau, Manneville [141. 
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Fig. 3: Bifurcation diagram for model a) depending on the frequency ratio 11 with enlargement 
and phase-plane plots for a) 11 = 1.22, b) 11 = 1.26 and c) 11 = 1.30 

Fig. 4: Chaotic motion in the three-dimensional phase space with Poincare sections, a) 
lit = x/4 and b) lit = 5x/4 

The results for model b) are presented in Fig. 5, 6 and Fig. 7. Fig. 5 shows the bifurcation 

diagram for both mosses depending on the damping ratio D (l< = 2.0, "( = 2.5, <5 = 1.0 l. The 
transition to chaos occurs for 0.07 ~ D ~ 0.04. 

The corresponding phase-plane plots and frequency spectra for mass 1 reveal, see Fig. 6, 

that with decreasing damping the number p of p-periodic solutions increase in the manner p = 1, 

2, 4. However for D = 0.05 this sequence seems to be interrupted and a p = 9 solution appears. 

In contrast to model a), chaos is approached similar to the well- known period-doubling route. 

For high damping, D > 0.07, only p = 1 solutions occur. Beyond critical damping, D = 1, only mass 2 

performs stick-slip Vibrations, while mass 1 remains in a pure slip mode, cf. Fig. 7. 
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4. Experimental results for continuous models 

In case of the cantilever beam c), and for the thin, centrally fixed plate d), measured signals 
are the deflection z(t) near band contact. The signals have been processed in order to gain 
frequency spectra, a pseudo state space, Lyapunov exponents and the correlation integral. 
According to Packard et.ai. [15), from a single time series of a state variable z(t) a pseudo 
state space, 

(8) 

can be reconstructed, where m denotes the embedding dimension and T the separation time. 
Then, applying the procedure given by Sana, Sawada (16), the spectrum of Lyopunov exponents 
can be computed and following Grassberger, Procaccio [17) the correlation integral C(r)- r" can 
be found. Here, r denotes the radius of a hypersphere in the pseudo state space and " the 
correlation exponent, which depends on the embedding dimension m. For sufficiently large 
values of m and decreasing radius r the correlation exponent tends to the correlation dimension 
Dc for a regular or chaotic attractor, while for a pure random noise signal C(r)- rm holds. For 

a noise signal on top of a deterministic signal, the plot log C(r) versus log r has two regions. If 
the noise level is greater than r, then the slope will increase with m, C(r)-r':" and if the noise 
level is less than r, the slope will be constant, C(r)- rOc. Therefore, it is possible to distinguish 
between chaotic and stochastic behaviour of measured signals. On the other hand, -the correla
tion dimension Dc gives a hint to the state space dimension required to model a system which 
exhibits chaotic behaviour. Fig. 8 shows the reconstructed time series and the corresponding 
autocorrelation function for model c) (cantilever beam). 
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Fig. 8: Autocorrelation function and reconstructed tlme series 
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The correlation integral C(rl as a function of the radius r of the hypersphere is shown in Fig. 9 

The results are summarized in Table 1. 

10 

10 

~ 10 .... 
U 
~10 

10 
log r 

Fig. 9: Correlation-Integral C(r) versus radius r for a measured time series with m = 4, 
T=80, n=15000, vo=0.043 mIs, FN =9.0 N 

Lyapunov exponents: (m=3) 

Correlation dimension: (m=4) Dc =2.046 

Table 1: Lyapunov exponents and correlation dimension for model c) 

Furthermore the friction characteristic has been measured using a special test set up. The fric
tion characteristic in relation of the normal force can be seen in Fig. 10. A curve fit with friction 
model (3) resulted in the parameters 110 = 0.7, II, = 0.35, A. = 0.25, ex = 0.00. 

Fig. 10: Measured friction characteristic 
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5. Concluding remarks 

Friction induced self-sustained oscillations exhibit a variety of phenomena. Chaotic motions 

have been found numerically and experimentally. Simulations based on two discrete models 

resulted in p-periodic solutions of nearly any period up to p = 9 as well as in chaotic motions. 

In the case of a single-degree-of-freedom oscillator with external harmonic excitation the rou
tes to chaos are similar to intermittency. All motions showed stick and Slip modes. In the case 
of a two-degree-of-freedom spring-mass- damper-system the routes to chaos have been" 

found similar to period-doubling. Here, for certain parameters one mass showed stick-slip 
motion while the other remained in a pure slip mode. Experiments performed with a cantilever 

beam and a thin centrally fixed plate, where in either case friction forces were applied by 
means of a running belt acting on the structure, friction forces with decreasing characteristic 
have been measured. A pseudo state space was reconstructed from time series and Lyapunov 

exponents as well as correlation dimension have been computed from measured signals. They 
proved that the measured irregular motions are in fact chaotic. 
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Characterisation of Chaotic Regimes and 
Transitions in a Thermally-Driven, Rotating 
Stratified Fluid 
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Berkshire, UK. 

Summary 

The transitions from regular, steady or periodic baroclinic waves to aperiodic, chaotic flow in 
a thermally-driven, rotating fluid annulus are discussed. Two distinct transitions are found, 
depending mainly on the value of the thermal Rossby number 0. At moderate 0 a transition to 
chaos occurs via a doubly-periodic 'amplitude vacillation' which develops a very low frequency 
irregular modulation. The transition towards classical 'geostrophic turbulence' at low 0 occurs at 
a well-defined point in parameter space, apparently via an intermittent 'structural vacillation'. 
Emphasis is placed on the characterisation of the transitions and chaotic states from phase 
portraits constructed using singular value decomposition methods. 

1. Introduction 

Prediction and assessment of intrinsic predictability have long been of primary interest in meteo

rology. The vast complexity of atmospheric behaviour has suggested that the finite predictability 

of the weather and climate may be due principally to the excitation of many degrees of freedom 

(DOF). Most recent studies of atmospheric predictability have therefore employed the most 

complex numerical simulations of atmospheric circulation [1], but with, as yet, rather inconclu

sive results as to the atmosphere's intrinsic predictability. With the development of the theory 

of chaos in low-order dynamical systems during the past 20 years [2], however, it has become 

apparent that complex, aperiodic behaviour with finite predictability can be exhibited in sys

tems with as few as 3 DOF. Such a result challenges the pessimistic assertion that atmospheric 

motion necessarily requires immense complexity in order to model its behaviour. The dynamics 

of weather and climate, however, is almost certainly still too complex to be characterised unam

biguously by existing methods; even if its dynamical behaviour does lie on a low- dimensional 

attractor, its dimension is probably too large to be characterised from existing datasets [3]. 

In studying possible low-order processes which may contribute to the finite predictability of the 

atmosphere, however, the use of laboratory eJI.-periments with dynamical similarities to atmo-

* Present address: Hooke Institute for Atmospheric Research, Clarendon Laboratory, Oxford 

University, UK. 
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spheric circulation can be a valuable source of physical insight, as well as providing a 'test-bed' 

for the development of analysis techniques which may eventually be applied to meteorological 

data. Thermal convection in a rotating, cylindrical fluid annulus, differentially heated in the 

horizontal, has been studied for many years [4] as one such laboratory analogue of the large-scale 

circulation of a planetary atmosphere. As with a generic atmosphere on a spherical planet, the 

annulus in its typical form possesses circular symmetry about the rotation axis in its boundary 

conditions, and exhibits a rich variety of flow regimes depending upon the external conditions 

(e.g. temperature contrast AT and rotation rate 11). These regimes range from steady axisym

metric flow (analogous to tropical Hadley flow, at low 11), through regular steady or periodic 

baroclinic waves (at moderate 11) to highly irregular aperiodic 'geostrophic turbulence' (at high 

11). As in the mid-latitude atmosphere, waves develop as the result of a potential energy

releasing (baroclinic [4]) instability of the azimuthally-symmetric component of the flow driven 

by differential heating. 

In the following sections, results arc presented from analyses of high precision time series of 

measurements of temperature and total heat transport in a rotating annulus, concentrating 

upon regions of parameter space close to observed transitions to spatio-temporal chaos. Section 

2 outlines the experimental details, and the analysis methods are described in Section 3, con

centrating especially on the use of singular value decomposition (SVD) techniques to construct 

and characterise phase portraits from the measured data. Some results on transitions to chaotic 

flows in the rotating annulus are presented in Section 4. 

2. Apparatus and data acquisition 

The working fluid was contained in a' cylindrical annulus with thermally conducting sidewalls 

at r = 2.0 cm and r = 8.5 cm, and rigid, insulating boundaries in contact with the fluid at z 

= 0 and z = 14.0 cm. The a.pparatus was rotated about its axis of symmetry and differentially 

heated in the horizontal at the sidewalls (the outer cylinder being the warmer). The annulus 

was designed for the precision measurement of fluid a.nd boundary temperatures and of total 

heat transport, and was essentially the same as described by Hignett et al. [5]. The working 

fluid consisted of a 25% solution by volume of glycerol in water, with a Prandtlnumber of 

26.4. Temperatures at the boundaries and in the fluid were measured using copper-constantan 

thermocouples (sensitivity'" 40JLV per K). In the fluid, 32 thermocouples were equally spaced 

in azimuth at mid-height and mid-radius, enabling the azimuthal wavenumber spectrum to be 

obtained readily by fast Fourier Transform techniques. The total heat transport through the 

inner side boundary was measured using the method described by Hignett [5], from the coolant 
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(water) flow rate and the difference in temperature between the inlet and outlet. Total heat 

transport on timescales as small as '" 20s could be measured to an absolute precision of'" ±2%. 

though much smaller relative changes ('" parts in 103 ) could be detected. 

A variety of different procedures were used to take in and analyse the data. Short time series of 

measurements at all thermocouples in the fluid and boundaries. and of the total heat transport. 

were recorded and used to identify the dominant flow type and to measure the wave drift rates 

and (where appropriate) vacillation frequencies (e.g. see [5]). At selected points. much longer. 

high precision time series of temperature at one of the ring thermocouples and the total heat 

transport. averaged over 1-2s. were recorded for up to 250 drift periods (requiring up to 20 hrs of 

measurements) for subsequent analysis. Mainly for practical reasons. the long time series were 

taken at constant ll. T = 10K and variable n. corresponding to a constant Grashof number (= 

aT. where a is the thermal Rossby number and T the Taylor number [4]) of", 6.19 x 105 • 

3. Phase portrait analyses 

The long time series were required primarily for the reconstruction of 'phase portraits' by the 

method of time-delay embedding (e.g. [2]). In the latter. a scalar time series T(t) is represented 

as a trajectory in a K-dimensional embedding space by denoting the state of the flow at time 

t by the vector [T(t).T(t+T).T(t+2T) .... T(t+(K-1)T)J. In the present work. phase portrait 

reconstruction was further refined by the use of singular value decomposition (SVD - [6]) to 

reproject the trajectory onto a statistically optimal orthogonal basis. The latter comprises the 

eigenvectors of the covariance matrix computed using a sliding 'window' of n points (where n > 
maximum required embedding dimension) which is stepped along the time series. As discussed 

in [6J. this method removes some of the arbitrary choices to be made in time-delay reconstruction 

(e.g. of delay time T). Use of a truncated set of the derived eigenvectors. ordered according to 

their eigenvalues. also introduces a useful element of filtering and averaging which can remove 

some of the unwanted non-deterministic components of the signal and enhance the signal-to

noise ratio of the deterministic component. An example of the application of this method to data 

from the rotating annulus [7J from a quasi-periodic flow on a very narrow 2-torus is illustrated 

in Fig. 1. 

The penalty which must be paid for these advantages is a need to sample the signal somewhat 

more frequently than would be strictly necessary for the simple form of delay embedding. For 

the present work. time series were typically sampled at 1-2 s intervals. placing 200 or more 

samples per wave drift period (though rather fewer per typical vacillation period. which ranged 
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Figure 1. Poincar~ sections from a weakly quasi-periodic annulus wave [7], reconstructed (a) 
using delay-embedding with T=lOs at T(t)=23.O"C and (b) using SVD with a 25-point window 
in the (ChC3) plane at Cl =0. 

typically from 50s - 300s). A window length Tw of between 75s and 100s proved most suitable, 

given the relatively long wave drift periods. This value of Tw is somewhat longer than would be 

suggested from the discussion of [6] (Eq 3.20) though, even for Tw = 100s, is still less than most 

typical fundamental vacillation frequencies. 

In characterising the behaviour of non-linear systems, it is often desirable to detect the onset of 

chaotic behaviour, and to obtain estimates of the degree of complexity of the flow. A variety of 

methods have appeared in the literature in recent years (e.g. [2]). The most common method 

is to estimate the correlation dimension [2] of the reconstructed attractor. This method is 

now known, however, generally to require very large and densely sampled datasets. Smith [8], 

for example, concludes that the number of statistically independent points N min required to 

estimate the correlation dimension to within ±5% of its true value exceeds 42M , where M is the 

greatest integer less than the dimension of the underlying attractor. With the present datasets 

(N < 5 x 104), this would preclude the reliable estimate of dimensions significantly exceeding 

about 2. The SVD method itself provides an estimate of the dimensionality of a dataset from the 

number of eigenvalues in the singular value spectrum lying significantly above the 'noise floor' 

(cf [6]). TIllS measure is not a robust estimate of the dimensionality, however, but depends on 

factors such as the local curvu~ure of the underlying manifold which, in turn, may depend upon 

the choice of sampling and window timescales T. and Tw. Accordingly, we follow the approach 

recommended by Smith [8] in using methods based on the analysis of localised regions of the 

reconstructed attractor. In the following analyses, we make use of the pointwise dimension Dp 
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[9) derived from the SVD phase portraits down to length scales limited only by the sampling and 

instrumental noise. For a given flow, the dimension quoted is an average over several (typically 

20) randomly-selected points across the reconstructed attractor. 

Static invariants, such as the various dimension estimates discussed above, provide an indica

tion of the overall intrinsic complexity of the behaviour of a dynamical system, but are not a 

particularly sensitive means of directly detecting the onset of chaos. Sensitive dependence on 

initial conditions is the critical property of chaotic behaviour, suggesting that an estimate of the 

largest non-negative Lyapunov exponent Al would be the most suitable means of detecting the 

onset of chaos. In the present work, we use the algorithm suggested by Wolf et al. [10), which 

directly measures the divergence of initially nearby segments of trajectories on the reconstructed 

attractor. Estimates of Al were derived from at tractors reconstructed using the simplest delay 

method as well as via SVD, with similar results being obtained. Consequently, results derived 

from the SVD trajectories were used to obtain the results given below. As with the dimension 

calculations, the robustness of the results obtained was verified by repeating the calculations 

using a range of embedding dimensions, delay/window times and evolution timescales. 

4. Results 

Fig. 2 shows estimates of both Dp (a) and Al (b) for all the flows studied in the Gr = 6.19 x lOS 

section as a function of Taylor number T. Solid squares in Fig. 2 denote estimates derived from 

the temperature time series, and open symbols denote results for heat transport. Steady wave 

and regular amplitude vacillation flows (drifting waves periodically modulated in amplitude 

[4]) consistently exhibit Dp slightly exceeding 1.0 and 2.0 respectively, consistent with their 

respective appearance in phase portraits [7) as limit cycles and 2-tori. Pointwise dimensions for 

the amplitude vacillation cases were also calculated from the corresponding heat transport time 

series, and consistently resulted in Dp N 1 i.e. 1 less than that of the corresponding temperature 

dataset because of the absence of the component due to the wave drift (d [11)). The largest 

Lyapunovexponent associated with these flows is consistently indistinguishable from zero, with 

an upper limit for Al of around 4 x 10-4 bits s-1 (implying an intrinsic error-doubling time of 

> 2500s. 

Sharp boundaries between quasi-periodic and apparently chaotic behaviour are found at Taylor 

numbers of 4.8 x 106 and 1.0 x 107 (and also probably at 3.8 x 106 ). The boundaries at T = 3.8 

X 106 and 4.8 x 106 correspond to sudden transitions at which the modulation index of regular 

amplitude vacillation develops an irregular variation (termed 'modulated amplitude vacillation' -
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Figure 2. Measurements of (a) Dp and (b) Al for barodinic annulus waves [7] as a function of 
Tat Gr=6.2 x 1OS, from SVD-reconstructed at tractors. 

MAV, [7]) on a timescale", 1500-25005. Spatial measurements show the azimuthal wavenumber 

m=3 component growing and decaying, and apparently competing with m:::2 in the MAV regime 

[7]. On crossing the boundary into the MAV regime, Dp jumps to a value around 3.2 and Al 

becomes significantly positive at '" 2.0 x 10-3 bits 5-1 , with little variation in these quantities 

across the MAV regime. The heat transport datasets also indicate a sharp transition to chaotic 

behaviour at this point, with Dp jumping to around 2 and Al consistent with the temperature 

data (around 3 x 10-3 bits 5-1 ). Phase portraits from the MAV regime cases are shown in Fig. 

3. The basic toroidal structure in the temperature phase portrait is qualitatively similar to that 

of pure amplitude vacillation, but the Poincar'li section reveals that the 'walls' of the torus have 

a finite thickness significantly greater than can be accounted for by instrumental effects. Little 

systematic structure is apparent within the wall thickness itself, though the Poincart; section 

does contain some strand-like features in both branches. In the heat transport phase portrait, 

the wave drift component is absent, and the trajectories appear to lie on a nearly disk-like 

structure of small though finite thickness (cf Hart [11]). The thickness of the disk-like structure 

is comparable with or somewhat greater than that due to instrumental drift. 

At the transition to structural vacillation (SV - in which regular waves undergo modulations 

of their structure but not primarily in the amplitude of the dominant wavenumber [4]) at T::: 

1.0 X 107, Al becomes significantly positive (Fig. 2) but initially quite small, then increases 

rapidly with T. Dp in this regime, however, remains close to 3, though with some evidence 

for a gradual increase in Dp with increasing T. The temperature phase portraits in this region 

(see [7]) show evidence of the underlying limit cycle associated with drifting regular waves, but 

otherwise little discernible structure. The transition into SV occurs within a very narrow region 

of parameter space, apparently going from steady, regular, drifting waves into fully-developed 

chaotic SV via a change in T of only 0.5%. The transition appears to entail an intermediate state 
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Figure 3. SVD phase portraits in tIle MAV regime derived from single-point tempera.ture mea.
surements [(a.) & (b)] a.nd tota.l hea.t transfer [(c) & (d)] using a. (25,2) window (Tw =85s). 
Poincare sections [(b) & (d)] a.re a.t Cl =0. 

which comprises intermittent bursts of vacillation (as apparent in the heat transport time series, 

see Fig. 4), though it was not possible to explore any possible scaling behaviour associated with 

this transition because of inadequate resolution in the control of the experimental conditions. 

This observation of a sudden transition to the chaotic SV regime is in contrast to previous work 

[12], and has not been observed in the two-layer system [11]. Neither transition described herein 

has been adequately reproduced to date in any low-order non-linear model. 
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Summa.ry 

For large areas of the parameter space of a nonlinear dynamical system with discontinuities the 
behavior is - such as in differentiable systems - characterized by limit cycles. Among other things, 
this can be put down to the fact that in each asymptotic stable area of the state space exactly 
one limit cycle must exist. In this paper a technique for computing a limit cycle will be presented. 
Furthermore it will be shown, how stability- and bifurcation-analysis can be applied to periodic 
solutions with discontinuities. The methods are demonstrated on the mechanical model of non
loaded gear wheels of a transmission. 

1 Introduction 

For technical problems it may in many cases be necessary to use mechanical models whose ma
thematical description has discontinuities with respect to the state space variables. Important 
examples are mechanical systems with impacts and play or stick-slip systems with dry-friction. 
Systems with impact and play are mainly investigated by authors as [SHAW, HOLMES 1983], 
[PFEIFFER 1984], [SHAW 1985], [HEIMANN, llAJAJ, SHERMAN 1988], [PFEIFFER 1988 a, b] 
and [KARAGIANNIS 1989]. Stick-slip systems are dealt with especially by [LOTSTEDT 1981], 
[SCIIIELEN 1983], [JEAN, PRATT 1985], [SHAW 1986], [MOREAU 1987] and [HAJEK 1989]. 
These papers concentrate mainly on mathematical modelling, computation and simulation. Some 
authors as HEIMAN et. al or SHAW also discuss stability and bifurcation problems of periodical 
solutions with discontinuities. The behavior of nonlinear vibrating systems is mostly characterized 
by limit cycles, which are asymptotically stable. The consequence is that - in spite of small pertur
bations - limit cycles determine the dynamical behavior., The size of the asymptotic stable areas 
depends on the systemparameters pEP, which - for technical reasons - belong to a set Pc lRm. 
lIence, it is important to investigate the stability- and bifurcation-behavior depending on pEP. 
For this purpose the first step is to compute the periodic solutions. In the second step it will be 
shown, how stability- and bifurcation-investigations can be applied to limit cycles. To demonstrate 
these steps, an example will be given. 

2 Theory 

2.1 Numerical computation of limit cycles with discontinuities 

With some modifications all results about the existence, stability and bifurcation of periodic solu
tions of a nonlinear differentiable dynamical system x = f( x, p) can be transferred to systems with 
discontinuities with respect to the variables x of the state space. 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium StuttgartlGennany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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Fig.l: Partition of state space TM with trajectory 

The most essential modification is the partition of the state space T M (';;;!. ill. n) into those open 
subsets Xi C T M, on which the vectorfield f : T M - T M is c" - continous. On each set Xi the 
mechanical system is described by a field fi, that is 

(2.1) 

If there are structural differences between the vectorfields fi, then the system is called "structural
variant". Otherwise it is called "structural-invariant". Stick-slip systems, for instance, are structural 
variant, systems with impact and play are structural-invariant. The border aXi of the set Xi 
constitutes the "set of discontinuities" or "switch-plane" of codimension 1 (c.f. Fig.l). In this case 
the separation of the state space is as follows: 

-N-

TM=U Xi. 
i=l 

(2.2) 

Without restrictions, it is possible to describe the switch-plane as the set of solutions of a nonlinear 
algebraic equation: 

Oi(X) = 0; Oi: TM - ill. (2.3) 

The switch-planes are POINCARE-sections for the trajectories. Therefore it is useful to describe 
the motion recursively. For the uniqueness of a trajectory +e (+e(O) = {) in the state space (d. 
Fig.l) a law 

(2.4) 

is necessary. O'i maps a point x~) immediately before the discontinuity to a point x~) immediately 
after the discontinuity. To compute a limit cycle means to determine a series of m points 

._ (OJ (I) (m-l) z.- x+ ,x+ , ... ,x+ 

which have to lie on the switch-plane. 

Furthermore the following equation must hold 

x~m) = x~) + n T e2/+! 

(2.5) 

(2.6) 

It is presumed that the state-space coordinate X2/+! represents the time, if the dynamical system 
(equation (2.1)) is nonautonomous. f is the number of degrees of freedom. In this case, the 
vectorfield f has to be T-periodically with respect to X2/+!, that is 

(2.7) 
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n E IN indicates the number of periods of the excitation of the system. e2J+1 is the unit-vector in 
"2j + 1 direction" of JR.2J+1. In the following, a limit cycle (according to equation (2.6» will be 
called a (m : n)-cycle. To compute a (m : n)-cycle it is useful to presume that the cycle-length m 
and the number of excitation-periods n are known. Moreover the series (it, ... , im) of indices of 
the sets Xi, which are passed by the trajecory, should be given. Let us assume that the recursion 
Wi. : g~I(O) ..... g~I(O) maps the state x~) to the state x~+1), then the equation 

!p. (z) _ xII) 
'I + 

R(C) := =0 (2.8) 
,T,. (m-2») _ (m-I) 
:r'm_1 x+ X+ 

is valid for the cycle C := (X~), ••• , X~m-I») • 

If the state x~) is determined, then the state x~+1) can be computed from the boundary-value
problem (DVP) according to equation (2.9). 

[',.:"l = [ """':(X'P) 1 

[ x(O) - x.\" 1 r(x(O), x(l» = = o . (2.9) 
gi.(x(I» 

x~+1) . - x(l) 

!Pik (x~») . - (I' (x(k+1») 
Ik -

The DVP can be solved by the program system BOUNDSOL (c.f. [BULIRSCH, STOER., DEUFL
lIAR.D 1977]). The numerical computation of the (m : n)-cycle C requires the Jacobian of the 
fUllction R. It turns out that the Jacobian 

G .. - D,T,. (x(k-I») 
'k'- "'Ik + (2.10) 

is the same matrix as used by the multinle-shooting-method. Using the unit matrices E on the 
superdiagonal of DR(C) as PIVOT-elements, it is possible to make a LR-decomposition with (m-l) 
block GAUSS steps. 
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2.2 Numerical stability- and bifurcation-analysis of a (m: n)-cycle 

Let z be an arbitrary point on one of the switch-planes, then the recursion 

x~):= z , XCk) .- ,T.. (XCk- 1») . (k - 1 2 ) + .- '" 'k + , -" ... (2.11) 

constitutes a unique series of break-through-points, induced by the trajectory iPz. This recursion 
may also be written as 

with s:= U gil(O) . 
ielN 

r z is called "asymptotic-stable" iff: 

(a) rz is restricted in m,n. 

(b) There is a g(z) > 0, so that for every neighbor-series rz, with II z - z, II < g(z) 
lim II r z(k) - r z,(k) 11= 0 is valid. 

k_oo 

(2.12) 

The simply connected components Z+:= {z' e s Ir z' is asymptotic-stable} are called "stabi
lity domains". From this definition an interesting theorem results: 

Theorem: In every stability domain Z+ C S exists one and only one periodic solution r z, 
which is - of course - asymptotical-stable. 

In other words: It exists a (m , n) e ]N2 and a z e Z+ so that r z is a (m : n )-cycle. For a proof 
see [REITH MEIER 1989). The determination of a (m : n)-cycle according to chapter (2.1) doesn't 
depend on whether jt is stable or not stable. The eigenvalues of the monodromymatrix indicate 
whether a (m: n)-cycle is stable or not. To compute this matrix it is assumed that Zo e Sis - for 
an appropriate (m, n) e ]N2 - a fixpoint of the mapping 

F: z H rz(m) - nTe2J+I • (2.13) 

After some algebraic manipulations one gets the monodromymatrix DF(zo) at Zo by means of the 
formula 

1 

DF(zo) = II Gik . 
k=m 

(2.14) 

The matrices Gi. are the Jacobians of the multiple-shooting-matrix (equations (2.12) and (2.13», 
which has already been computed. Therefore no additional computation is necessary to build 
DF(zo). The stability of the limit cycle depends essentially on the choice of the parameters p. 
Furthermore the influence of the parameters on the bifurcation-analysis is important, too. The 
reason for this is the direct connection between the stability and the bifurcation of the (m : n)
cycle. That is to say, the point z is a unique solution of 

r(z) := F'(z) - z = 0 , (2.15) 

with F' := F 0 ... 0 F (I-times) iff 
det(Dr(z» ~ 0 (2.16) 

(implicit function theorem!). I is an arbitrary integer. It's evident that 

Dr(z) = (DF(z»' - E (2.17) 
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is true, if z is a fixpoint of F. Hence 

>.(DF(z» = e2 .. i~, (k, IE Z) (2.18) 

is necessary for the bifurcation of a (m : n)-cycle. >.(DF(z» is one of the eigenvalues of the 
monodromymatrix DF(z). The numbers e2 .. i~ lie densely on the unit circle in 0::. Therefore it is 
necessary that none of the eigenvalues of the monodromymatrix passes - by variation of p - the 
unit circle (c.f. Fig.2). 

Fig.2: Necessary condition for bifurcation of a (m : n)-cycle 

According to LlAPUNOV, a limit cycle r z is asymptotical-siable, iff aJl eigenvalues of the mon
odromymatrix lie inside the unit circle. That means, the loss of stability of a (m : n)-cycle is a 
necessary condition for its bifurcation. Therefore a metamorphosis of the solutions of the dynamical 
system is possible only if the system loses its stability. 

3 Example 

The vibrations of mechanical models of non-loaded gear wheels of a transmission are - with in
creasing amplitudes or frequencies of the driving shaft - characterized by a series of bifurcations of 
periodic solutions. 

@ ®@ 0® @ 
I I I I I I 

~t lilt t:-
Fig.3: Manual-transmission with its mechanical model 

To demonstrate this bifurcation behavior, a simple non-loaded gear wheel model with one degree 
of freedom (DOF) will be considered. [PFEIFFER 198830] investigated a rattling model of a gear 
wheel pair, which is equivalent to the model shown in Fig.4. 

Fig.4: Mechanical model of a non-loaded gear wheel pair 
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A masspoint m is moving in a pan (mass M ~ m) of the length v. The mass is damped propor
tionally to its velocity (damping coefficient 6). The pan will be excited according to the function 
e( t, pd. This function e corresponds to the excitement caused by. the motor. Using the relative
coordinate x, the equation of motion reads after transformation to an autonomous ODE of first 
order (XI:= X,X2:= X,X3:= t) 

X2 
-e(X3,Pi)- (~)X2 
" ..... 1 ___ .. .----' 

(3.1) 

f(x,p) 

The state space T M = [0, v] X lR 2 is restricted with respect to the relative coordinate Xl. If the 
mass m reaches the right or left border, an impact will take place. The time at this impact marks 
the discontinuity. It is assumed that for every discontinuity the same law 

(T (x~») := diag {1, -e, 1} . x~) (3.2) 

is true. e is the impact-number. The index ik, indicating the set Xi. may be ignored, because 
the law (T applies to the whole area of the switch-plane. For e(t,Pi) := Asinwt the vector of the 
system parameters is represented by: 

P = (d,A,w,e) i d:= (£) . (3.3) 

Fig.5 shows a computed (2:1)-cycle with period T = 27r/w. For investigating the stability of this 
cycle, the monodromymatrix is needed. 

X 

X 

Fig.5: (2:1)-cycle projected into the (x3,xI)-plane and into the (xbx2)-phase-space. 

After some algebraic manipulations one gets - independent of the excitation e - for the determinant 
of the monodromymatrix: 

det(DF(zo) = e2m e-2d(n.T) • (3.4) 

On the other hand 
det(DF(zo)) = >'1 . >'2 (3.5) 

is always true. This equation leads - together with positive damping (d > 0) and e :::; 1 - to 

(3.6) 
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or - in case of complex conjugate eigenvalues - to IAII < 1. That means that the eigenvalues can 
leave the unit circle only on the real axis. As Fig.6a shows, the (2:1)-cycle will be deformed, if the 
amplitude of the excitation e decreases. Fig.6b shows the corresponding course of the eigenvalues 
Al and A2. 

:i: 

Fig.6a: (2:1)-cycle obtained by variation of A 

1m 

n. 

Fig.6b: Course of the eigenvalues of DF(zo) ob
tained by variation of A 

One of the eigenvalues leaves the unit circle on the negative real axis, that is, a perioddoubling to 
a (4: 1 )-cycle will take place. r-----------------------, 

I ... 

-11-__ *--1 
n. 

Fig.7: Course of the eigenvalues AI, A2 obtained by variation of d 

In contrast to the perioddoubling, a pitch fork-bifurcation will take place, if one varies the damping 
parameter d (c.f. Fig.7). 

4 Discussion 

For large areas of the parameter-space the behavior of nonlinear dynamical systems with discon
tinuities is reduced to stable limit cycles. Therefore an efficient way to investigate a nonlinear 
dynamical system is to compute the (m : n)-cycles and determine their behavior stability- and 
bifurcation. Furthermore the way to irregularity or chaos can be studied - independently of the 
individual problem - in detail. The necessary algorithms are usually composed by standard algo
rithms - such as multiple-shooting-method or modified NEWTON algorithms - of the numerical 
analysis. The methods have been demonstrated by systems with impact and play. An application 
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to other systems - such as stick-slip-systems with dry friction [REITIIMEIER 1989)- can be made 
without any difficulty in an analogous way. 
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Summary 

An expert system CONEX for the analysis of nonlinear dynamical 
systems is described in the paper. It enables an automatic ge
neration of continuation programs, interactive computations, 
graphical representation and interpretation of results. As an 
application this system is used for the study of periodic regi
mes of a driven impact oscillator. 

Introduction 

In recent years a large number of numerical methods for analysis 

of the dependence of solutions of nonlinear models of dynamical 

systems on parameters has been developed. Path following (conti

nuation) techniques appear to be most effective for the global 

description of (both steady state and dynamic) behaviour of such 

systems. Curves of stationary or periodic solutions, bifurcation 

points and limit (fold) points in dependence on parameters can 

be constructed, as it was described in several recent papers and 

textbooks [1-7]. Also specialized textbooks devoted to the use 

of continuation techniques in the nonlinear problems of mecha

nics of deformable solid bodies are beginning to appear [8]. Ori
ginal software is being developed but often it can be used only 

at the place of its origin and by highly specialized research 
workers. The reason is that productive application of such a 

software often requires profound knowledge both of specialized 

numerical techniques and of the theory of nonlinear dynamical 

systems. In this paper we briefly describe results of gradual 

development of an expert system for the analysis of nonlinear 

dynamical systems - CONEX (CONtinuation EXpert system). The CONEX 

is based on a unification of numerical algorithms with the means 
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and approaches of logical programming and it can be used in the 
several ways : 
1) in the simplest form as a source of numerical subroutines for 

construction of dependences on parameters by continuation met
hods ( the user can modify the generated program either inde
pendently or in the CONEX environment), 

2) as a tool for program generation, interactive computations 
and presentation of results in the form of graphs or tables, 

3) in its full form where computed parametric dependences are 

analyzed, inferences from obtained information are stored in 
the Problem Database and fllrther course of computations is 
suggested by the CONEX. 

Here we briefly describe the structure of the CONE X and an exam
ple of its application. 

Structure of CONE X 

The CONEX has been developed as an open modular system .. It enab
les an interactive use of routines for continuation and bifurca

tion analysis of model equations, construction of solution bran
ches and their analysis. The CONEX provides users with: 1) an au
tomatic generation of subroutines in FORTRAN 77 for model-depen
dent part of the problem (computation of right-hand sides, Jacobi 

matrix, etc.) by means of symbolic manipulations, 2) interactive 
data input controlled by menus, 3) formation and continuous up

dating of a database of the studied problem, suggestions on furt
her steps of analysis, 4) interactive analysis of the obtained 
results stored in the database including various ways of graphi
cal representation of results. 

The CONEX can automatically prepare the actual continuation prog
ram in a runable form, control its execution and incorporate re

sults into the database .. It works with a library of numerical 
subroutines. Minimal hardware requirement is IBM PC/XT compatible 

computer with a hard disc and 640 kB of RAM. Numerical computa

tions can be executed on a mainframe computer. All parts of CONE X 
have been designed so as to 

applications. 
permit easy modification for other 

The CONEX consists of several parts (cf .. Fig .. 1). The control 

program which is built from a number of specialized parts is res-
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ponsible for the dispatching of processes, formation of a user 

interface and an error handling. The dispatcher is the only per

manently resident part of the cONEX. It calls all other modules 

and programs and allocates memory and other resources for them. 
The dispatcher calls modules sequentially on the basis of a spe

cial description file which can be either generated by the cONEX 

automatically or can be created by the user in any editor. The 
user interface provides comfortable input of all the user defi
ned data. Because of a large variety of the possible types of 
the data (menu choices, numbers, equations etc.), this part of 

the CONE X consists of a number of modules. The module MAINM 

builds the description file for the dispatcher on the basis of 

a number of user choices from available menus. It also handles 

creating and/or setting of the model. From the user point of 
view a model is a problem expressed as a set of equations and 

written down in a symbolic form (in notation similar to mathema

tical rules) as an input into the program. The names of variab

les are defined by the user .. Symbolic terms can be introduced 
and there is no restriction on their nesting. 

The input of the data for numerical programs is provided by the 
DATED module. This module works on the basis of the description 

of the structure of the input data for the particular continua
tion program. 
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Several types of outputs are available in the CONEX in the cour
se of actual computations. Standard output files are mandatory. 

The user can choose either from a graphical or a text (numeri

cal) representation of results on the console. 

The computational knowledge base consists 1) of libraries neces

sary to build proper continuation program (e.g. the library of 
continuation routines, library of graphics support routines, 

etc.) and of a set of system routines (e.g. compiler, linker, 

editor, etc.) and 2) of the knowledge base containing information 

on the use of the above routines and libraries. The continuation 
library currently includes software for construction of statio

nary and periodic solutions, limit points, Hopf bifurcation and 
period-doubling bifurcation points of both autonomous and perio

dically perturbed systems of ordinary differential and differen

ce equations. 

The problem database is formed both in the course of the commu

nication between the CONEX and the user, and in the course of 

computations (automatically). It consists of three parts: the 

first one is formed by the output data sets, the second one con

tains names of the ouput data sets, description of their struc

ture and information on the studied problem resulting from an 

automatic analysis of data sets and/or heuristics. The third 
part contains knowledge derived from computational experience, 

together with additional information derived from the structure 

of the model equations and from the analysis of the output data 

sets. 

The problem analysis knowledge base consists of two parts. The 

first one contains algorithms and subroutines for an analysis of 

the output data, location of specific points on solution curves, 

e.g. limit points, branching points, etc. The second part con
tains general rules of inference from the obtained databases. 

An Example 

As an example, we take a periodically driven damped impact oscil

lator and find its periodic solutions by numerical continuation. 
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The system is described by the equations [9,10] 

x + 20tx + x A cos(25'l;t/T) x > 0 (1) 

and 

x(t.+) = -rx(t.-) 
1 1 

x = d' , (2) 

where x is relative displacement of an impacting body and ot., 

Q , r, A and T are parameters. We will be interested in chan

ges of p/q-periodic orbits as the forcing period T is varied. 
Here q is the period of the stroboscopic Poincare map associa

ted with Eqs (1), (2) and p is the number of impacts occuring 
within the period of the orbit. 

We can use either stroboscopic mapping representation (i .. e._ the 
map relating. two points separated by the time distance of the size T) 

or impact mapping representation (i~e._ the map relating two 
points separated by apriori unknown time of flight between two 
sucessive impacts). The system (1), (2) can be rewritten as 

follows : 
a) set of autonomous differential equations applied from one 

impact to the next one, 

x = y 

-2oty - x + A cos( 2m; tiT) (3) 

t = 1 

which is valid for x > d and 

b) the impact mapping at time ti ' 

x(t.+) = x(t--) 
1 1 

(4) 

y(t.+) = - ry(t--) 
1 1 

which is applied at points located in the impact manifold 

M = [(x, y, t) j x = oJ. 



www.manaraa.com

262 

The flow of Eqs (3) induces a map which upon composition with 

a map defined by (4) gives the impact m1pping. This implies that 

the impact representation is easy to obtain. However, a new 

impact on a periodic orbit of (3), (4) may emerge via tangency 

of the orbit of (3) with the impact manifold M as a parameter 

is varied. Similarly, an old impact can be missed with varying 

parameter. These events manifest themselves as discontinuities 

in the impact mapping representation but the stroboscopic re

presentation is continuous and piecewise differentiable. Thus 

the parametrized periodic orbits of Eqs (3), (4) form a piece

wise smooth manifold. The points, at which the dependence of 

a p/q- periodic orbit on a parameter is not smooth, a tangency 

to M occurs and the number of impacts changes by one, i.e., 

ei ther (p-l) /q- or (p+l)/q- orbit continues to exist. 
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Fig. 2. Plot of Y = ~~ -1 yO. )/q vs T for one- and two-
periodic orbits. Branch 6f peri6d two orbits changes its im-
pact/period ratio at the point of non-smoothness. Full lines -
stable orbits, dashed lines - unstable orbits, circles - period 
doubling points;. 0<.= 0.2 , A = 1 , 8' = 0 , r = 1 . 
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The continuation routine implemented in CONE X makes use of the 
impact mapping representation and indicates whether a new impact 
emerges or an old impact is likely to become extinct. Then the 

user is provided with an estimate of a starting point behind the 
point of non-smoothness. The simplest example of such a compu

tation is shown in Fig. 2. Here the branch of 1/2-periodic or
bits changes non-smoothly to the branch of 2/2-periodic orbits 
which in turn terminates at the branch of Ill-periodic orbits 

via period-doubling bifurcation. 
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A four-variable ordinary differential equation with hyperchaos is investigated 
further numerically. A self-similar Sierpinski-type fractal is found in a plane 
of initial conditions if the prospective fate of each point (whether it escapes 
through the vne or the other escape hole in the exploded hyperchaotic attractor) 
is used for a coloring criterion. A basin boundary of the same qualitative shape 
therefore exists in either this equation or a closely related one. All hyper
chaotic systems are eligible for an analogous investigation - both numerically 
and, if possible, experimentally. 

Introduction 

~1odern "nonlinear science," the theory and application of dynamical systems 
theory, is presently divided up into two major subfields characterizable by the 
two labels "chaos" and "fractals." Both these terms are frequently used inter
changeably (in book titles, for example) even though the mathematical relation
ship is far from clear. On the one hand, it is correct that all chaotic limit 
sets arising in differentiable dynamical systems necessarily are fractal objects 
because transversal cuts through their cross sections reveal a Cantor set struct
ure 1. On the other hand it is also correct that virtually all of the more spect
acular fractal structures found in complex-analytic maps2 have so far resisted 
reproduction in generic continuolJs systems, that is, in the main class of dynam
ical systems that are of applicational interest. 

In the following, a prototype 4-variable ODE with hyperchaos3,4 will be recon
sidered because it reveals a "Sierpinski-type" self-similarity in a 2-D set of 
initial conditions. 

The Equation 

The following four-variable system3 is considered: 

W. Schiehlen (Editor) 
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x w (-y - c) + (1 - w) (z + c) 

y w (x + a - 1) + (1 - w) y (z + c)/(x + b - 1) 
(1 ) 

z = w z (-y - c)/(x - b) + (1 - w) (-x + a) 

E W W (1 - w)(w - 1 + x) - 5(W - 0.5) . 

In the singular-perturbation limit (E ~ D), and if also simultaneously 5 ~ 0 
so that the slow manifold of w becomes literally letter-Z shaped, one finds 
that the trajectories of this 4-dimensional system possess two 2-dimensional 
projections (in the x,y and the X,z plane) that cover those of the correspond
ing projections of two simpler, 3-dimensional systems. The first of these ord
inary-chaos generating, 3-variable systems is 

x w (-y - c) + (1 - w) (x + b -1) 

y w (x + a - 1) + (1 - w) Y (2) 

E W w (1 - w)(w - 1 + x) - 5(W - 0.5) 

the second is 

x = w (x - b) + (1 - w) (z + c) 

z w z + (1 - w) (-x + a) (3) 

~ w w (1 -w)(w - 1 + x) - o(w - 0.5) . 

It is not hard to see that Eq.(3) transforms into Eq.(2) under a change of 
variables, namely, the substitution y = z, x(Eq.2) = 1 - x(Eq.3) and 
w(Eq.2) = 1 - w(Eq.3). 
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The limiting version to Eq.(2) - with a nonexplicit right-hand function in 
the third line - was indicated by Mira5 as a particularly transparent illustr
ation of chaos generation by means of the reinjection principle6. One easily 
sees from Eq.(2) that in the singular-perturbation limit, where (if also 0 is 
allowed to approach zero) w is always equal to either 1 or 0 , the two
dimensional motion generated by the first t~o variables al~ays consists of traject
ories that are either concentric circles (x = - y - c, y = x + a - 1) corresp
onding ~o a harmonic osc~llator (with center x = 1 - a , y = - c), or straight 
lines (x = x + b - 1 , y = y) emanating from a star-shaped unstable node (at 
x = 1 - b, y = 0). 

Because of this maximal simplicity of all submotions in the singular limit, 
it is possible to write down explicitly the corresponding Poincare cross section. 
Thus, one obtains for Eq.(2) the following noninvertible 1-D map5, at x=O, w=1 

/ b 2 
- C + 2a - 1 + (b=T y n + c) (4a) 

Similarly, one obtains for the limiting cross section of Eq.(3), at x=O, w=1 

Eh ( - c + / 2a - 1 + (zn + C)2 ) • (4b) 

Both equations are identical, except for a linear factor (z = b~l y) that is due 
to the fact in generating the second cross section, not the symmetrically corresp
onding location (x=1) was chosen. The two equations were written down explicitly 
here because the combined equation, Eq.(4), at the same time represents the non
invertible 2-D map that applies to Eq.(l) as its own limiting cross section, at 
x=O, w=l . Therefore the two "smoothened letter-V" shaped hyperbolas of Eq.(4) 
- obtained with a = 0.51 and both b,c larger than unity - combine to give an 
"ironed-flat" fOlded-handkerchief map, just as two logistic maps do. For numeric
al simulations of both Eq.(1) and Eq.(4), see4. 

To promote a better intuitive understanding of how Eq.(l) actually works, 
Figure 1 shows in graphical form the two major "pure" projections that determine 
the system's behavior. 
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Figure 1 Principal two-dimensional 
projections for the limiting flow of 
Eq.(1). Note that these two projections 
are compatible because they are mutually 
rotated 90 degrees about the x-axis. 
The trajectories seen are either circle 
segments or straight-line segments. 
The continuously drawn segments lie on 
the w = 0 floor of the letter-Z 
shaped slow manifold of the fourth 
variable while the dashed segments lie 
on the w = 1 floor. The instantaneous 
up and down transitions occur whenever 
an arrowhead reaches the precipice at 
x = 1 or x = 0 , respectively. 

The system of Eq.(1) is capable of exhibiting two "independent" types of chaos, 
simultaneously. The decisive parameter is b. If b is much larger than unity, 

there is no chaos - only a limit cycle that consists of a straight-line segment 
and a curved arc joined together, in either partial system. As b is decreased, the 

two letter-V shaped maps, Eqs.(4a) and (4b), acquire a steeper and steeper slope 
each. (The slope becomes numerically equal to 2 as breaches 2 from above.) 
In the process, a chaotic attractor develops through period-doubling in each 

subsystem. 

We are interested in what happens if b is decreased somewhat further still. 
There exists a threshold shortly below two that is directly analogous to the 
well-known critical value b = 4 in the logistic map, xn+1 = bxn(1 - xn), 
beyond which the attractor disappears (explodes). In Figure 1, this transition 
manifests itself in a characteristic fashion: The dense recurrent region then 
touches the x-axis, from the left. As a consequence, eventually the arrowhead 
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of a circle segment comes to lie to the right of the x-axis. Once this has 

happened, there is no return. A spiral of approximately constant diameter but 
exponentially growing steepness leads toward infinity, on the right. 

The full equation - that is, Eq.(l) with both E and 0 small positive but 
nonzero - still possesses an analogous threshold in b , although this thresh
old ceases to be exactly equal in the two subsystems. At some value of b not 
far below two, once more either chaotic subflow is punctured by an "escape hole" 
of its own. 

The described principle of "double puncturing" (double explosion) has a non
trivial consequence. It enables one to classify initial conditions according 
to whether they are going to explode along the one, or along the other, escape 
route. Wh il e it takes along time to check thi s by hand, the computer is a 
convenient tool when looking at the facts is at stake. Figure 2 gives an 

illustration of what can be found numerically. 

Figure 2 A scan of initial conditions in the y,z plane, while x and w 

are initially at 0 and 0.01, respectively. Numerical simulation of Eq.(l) 

using a standard Runge-Kutta-r~erson integration routine with variable step size 

implemented on a 19-digit desk-top computer. Parameters: a = 0.5, b = 1.55, 
c = 1.3, E = 0 = 0.005, maximum step error 10-4 . Axes: - 1 to 0.1 for 

y (abscissa), and - 2.28 to 0.1 for z (ordinate). Criteria used for color
ing: Black, when y(t) > 0.2 while w(t) > 0.8 and x(t) < 0.2. White, when z(t) 

> 0.2 while w(t) < 0.2 and x(t) > 0.8; or else step size < 10-1~0.5 % of 

points). Note: Taking w(O) = 0.95 gives virtually identical results. 
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Oiscussion 

A new type of qualitative behavior in an DOE has been described. Initial cond
itions can behave differently in space in such a way that a Sierpinski-type2 

self-similar fractal is formed in a plane in 4 dimensions. 

From the mathematical point of view, our result can be understood as an im
plication of global analysis. If in an ordinary Smale! "horseshoe" map (like 
Henon's map7), the recurrent region is invaded by more than a single basin, the 
two saddles that have encroached on the former chaotic attractor divide the lat
ter's domain up in a very complicated manner. This was demonstrated inS follow
ing earlier work on the underlying noninvertible case by Gumowski and Mira9. 
These authors also coined a new term for the arising complexity, "frontiere 
floue" (fuzzy boindary). Every point of the Smale basic set1, the set of surviv
ing periodic (and therefore returning) points that forms a product of two Cantor 
sets, is adjacent to either basin. So is the point's 1-0 stable manifold. The 
union of all these repelling 1-0 manifolds forms the actual 1-0 boundary. The 
visible outcome, locally, is a set of Cantor lines separating two "thick" Cantor 
sets (Cantor stripes) of initial conditions. 

The present case is analogous but involves one more dimension. A "hyper:horseshoe" 
(folded towel) can likewi~e be looked at under a condition where the formerly pres
ent attractor has been invaded by two external basins. Every point of the gener
alized basic set (which now is a product of three Cantor sets) then is adjacent 
to either basin. So is, again, the point's 1-0 stable manifold. The latter, 
however, now in addition spans a whole 2-0 "stable sheet." The union of all 
these repelling sheets forms the actual 2-0 boundary. However, similarly as with an 
unstable node in a 2-variable continuous dynamical system - where it is the arb
itrary location of a neighboring saddle that selects which one from the infinitude 
of unstable trajectories that emerge from the node becomes the new boundary passing 
through that node - , so in the present case an infinitude of alternative sheets 

is available to each point as far as the connection with an external orthogonal 
saddl e is concerned. Every member of the - when looked at from the top, a.long the 
direction of the stable manifolds - 2-dimensional Cantor set of points of the basic 
set is subject to this imperative to connect. Since the shapes of the lateral 
sheets of the two invading fixed points have to be accommodated primarily, and since 
every local patch gets eventually blown up to the full size of the map, it, is plaus
ible that the externally imposed shape selection will be repeated on all scales in 
a self-affine manner. In the prototypic case - two uncoupled exploded logistic maps 
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(or Eq.4, respectively) - , one obtains an Alexandrov-cross like fractal with
in the Sierpinskian class - the "iterated Swiss Flag"lO. This structur~, which 
already exists in the noninvertible limit, "survives" the transition toward an 
adjacent 3-D invertible equation {hyper Henon map)ll. Interestingly, even the 
nonexploded hyperchaotic attractor a1ready contains all of those self-affine 
fractals embedded in its own symbolic dynamicsl~ so that they can be recovered 
from a time series12 . 

The present result thus appears to "confirm" that continuous differentiable 
systems are faithful to their own maps (cross sections). However, there is a 
grain of salt - the present example is not quite finished. The initial cond
itions were not classified according to the final attractors reached, which is 
what classically defines a basin boundary, but only according to a finite crit
erion (one or the other escape hole reached). It might therefore happen that 
the final attractors "re-unite" some or even all of the features found. To 
find out, the equation will need to be modified - most simply by the addition 
to b of small higher-order terms in y and z. The reason has to with 
Eq.{l)'s becoming non-Lipschitz as x{t) approaches b from below or I-b 
from above; for then one of the two denominators on the right-hand side becomes 
zero. This "late" complication plays no role in the above simulation. Never
theless the fact remains that the picture of Figure 2 applies rigorously only 
to an "analogue" to Eq.(l) that is close to it in parameter space but has yet 
to be written down explicitly. The palm for presenting the first "totally 
clear-cut" example in the present class therefore remains to be won. Next, 
use should be made of a much simpler hyperchaos-generating equation like that 
of13 which is globally Lipschitz. Eq.(l) had only been chosen because it of
fers analytical guidance as to what combination of parameters to select for a 
double explosion to occur, and where to then place the initial plane. 

Perhaps, the above example is already strong enough, however, to effectively 
narrow the "gulf" that still sets apart complex-analytic from real-life systems 
(cf. Introduction). Recently, another 4-variable continuous system has been 
found vlhich, too, generates a new type of fractal behavior - a "nonsmooth" 
(nowhere differentiable) boundary14. Chaotic forcing of a single-variable 
system that possesses an unstable equilibrium suffices. Only one direction 
of folding - and no "puncturing" - is involved. The two examples nevertheless 
complement each other it appears. Taken together they show that the two most 
surprising features of noninvertible (both complex-analytic2 and real 15) dyn
amical systems, "self-similarity" and "nonsmoothness" of a bound"ry, can be 
retrieved in generic differentiable continuous systems - separately. 
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What remains open is whether or not the combination can be expected to be 
found in the realistic class, too. A brute-force numerical analysis of Eq.(l) 
in further parameter regions (with a,b,c split into a pair each) might be all 
that is required to answer this question. Alternatively, a second look at data 
already in the literature might suffice. There exists an interesting example 
of a periodic orbit on a boundary, in a 4-variable continuous system (two coup
led van-der-Pol oscillators), that possesses two positive Lyapunov characteristic 
exponents 16 • This property is also a characteristic of periodic orbits lying on 
the present boundary, as well as of those of14. Battelino's orbit, which was 
discovered using the numerically demanding "straddle orbit method,,16, may thus 
deserve to be reinvestigated - for example, by means of the simple Mandelbrot2 

scanning method employed above. To judge from the (dots) picture already avail
able (Figure 8b Of16), all three possibilities mentioned - the Sierpinskian, the 
Weierstrassian, and the combined Julian type of behavior - might possess a pos
itive chance of being retrieved. Thirdly, search for a new principle may turn 
out to be indispensable. After the principle of the doubly punctured folded 
towel, and that of the once folded-over towel that is nonpunctured but bilat
erally expanding, what might come next? A once-folded towel that, ~/hile bilat
erally expanding on the outsides, is centrally contracting is one possible cand
idate. Its two "parallel" non smooth boundaries can be brought to "fusion." The 
surviving boundary born thereby might be "web-like" in addition to its being 
nonsmooth. Chaotic forcing of a single-variable system governed by an "inverted" 
(rather than ordinary) letter-W type potential offers itself under a condition 
of moderate back-coupling. An alternative possibility will be a return to 
Smale'sl axiom-A principle under a condition of stability inversion. A 4-variab
le axiom-A ODE for which this can be accomplished is available17 . A close simil
arity to the complex-logistic map (which too harbors a repelling solenoid) can 
thereby be forced perhaps. 

To conclude, tlandelbrot's scanning method proves useful in continuous systems 
as well. After chaotically forced systems14 , now hyperchaotic systems follow 
suit. Four-variable systems are a new frontier. ~'echanical engineering "takes 
off" from two-degree-of-freedom dissipative (that is, generic 4-variable) sys
tems 18. Well-stirred chemical reaction systems, too, exhibit signs of intrinsic
ally 4-variable behavior19 • Indeed, the "natural analogue computers" of the real 
world may turn out to be candidates for the present type of investigation them
selves 14 . For nothing lends itself more readily to inspection than self
similarity. 

We thank ~Jerner Schiehlen, Hans Troger, Francis Hoon, Igor Gumowski and 1'1.S. 
El Naschie for discussions. Work supported in part by the N.S.F. 



www.manaraa.com

273 

References 

1. S. Smale (1967). Bull. Amer. Math. Soc. 73, 747. 

2. B. Mandelbrot, The Fractal Geometry of Nature. Freeman, San Francisco 1983. 

3. O.E. Rossler and C. Mira (1981), Higher-order chaos in a constrained differ
ential equation with an explicit cross section, extended abstract in: 
Tagungsbericht 40/1981, pp. 9-10. Mathematisches Forschungsinstitut Ober
wolfach, 7620 Oberwolfach-Walke, West Germany. 

4. O.E. Rossler (1983). Z. Naturforsch. 38~, 788. 

5. C. t4ira (1978), Complex dynamics generated by a third-order differential 
equation (in French), in: Proc. "Equadiff 78" (R. Conti, G. Sestini and 
G. Villari, Eds.), pp. 25-36. Florence, Italy. 

6. O.E. Rossler (1976). Z. Naturforsch. ~~, 259. 

7. M. Henon (1976). Commun. Math. Phys. 50, 69. 

8. C. Mira (1979). C. R. Acad. Sc. Paris 288~, 591. 

9. I. Gumowski and C. Mira (1975). C. R. Acad. Sc. Paris 280~, 905. 

10. O.E. Rossler, C. Kahlert, J. Parisi, J. Peinke and B. Rohricht (1986). 
Z. Naturforsch. 41 ~, 819. 

11. O.E. Rossler, J. Hudson, M. Klein and R. Wais (1988), Self-similar basin 
boundary in an invertible system (folded-towel map), in: Dynamic Patterns 
in Complex Systems (J.A.S. Kelso, A.J. Mandell and M.F. Shlesinger, Eds.), 
pp. 209-218. World Scientific, Singapore. 

12. O.E. Rossler and J.L. Hudson (1989), Self-similarity in hyperchaotic data, 
in: Chaotic Dynamics in Brain Function (E. Basar, Ed.), pp. 113-121. 
Springer-Verlag, Berlin. 

13. O.E. Rossler (1979). Phys. Lett. Z!~, 155. 

14. O.E. Rossler, J.L. Hudson and M. Klein (1989). J. Phys. Chern. 93, 2358. 

15. O.E. Rossler and C. Kahlert (1987). Z. Naturforsch. 42 ~, 324. 

16. P.M. Battelino, C. Grebogi, E. Ott, J.A. Yorke and E.D. Yorke (1988). 
Physica 32 Q, 296. 

17. O.E. Rossler (1985), Example of an axiom-A ODE, in: Chaos, Fractals and 
Dynamics (P. Fischer and W.R. Smith, Eds.), pp. 105-114. M. Dekker, New York. 

18. F. tloon, Personal communication 1989. 

19. G. Baier, K. Wegmann and J.L. Hudson (1989). Phys. Lett. ~ (submitted). 



www.manaraa.com

Global Nonlinear Oscillations and Onset 
of Chaos 

G. SCHMIDT 

Institute of Mechanics 
Academy of Sciences of the GoDoRo, Berlin 

Recent results by Mrso Szemplinska-Btupnicka and others /5,6, 
7,3/ have shown that an indication of the onset of chaotic 
vibrations can be got by hi8her analytical approximation of 
the vibrational solu"t;ion or its stabilityo In what follows, 
nonlinear vibrations under 1) 8eneral anharmonic parametric 
and combined forced excitation and 2) asymmetric forced exci
tation and the onset of chaotic behaviour are discussed by 
higher analytical approximation and numerical evalua"t;ion. The 
numerical and computeralgebraic evaluations were carried out 
by R. Dum with the Cyber of the University Innsbruck. 

1. General Anhl1rmonic Parametric and Forced ExcitRtion 

We first investigate the stationary vibrations modelled by a 
differential equation which can be written in the transformed 
dimensionless shape 

V.2X Il.yCf'x .j-2~(pl'l ("J).s2nt·"'1wS,J12nt)X +it-rx~+d,<,' 
1;;:J,3) • ., (1) 

-~(t.t..Os nt+9"s'-l1l'd) 
1t3,~.?-

where V is the frequency and r1 =.1: 1 or 0 represents the linear, 
r~ 0 a nonlinear restoring force, d a linear damping, Pn' qn' 
and fn' gn a general periodic parametric and forced excitation 
respectively. Especially tlle last ones (inertial excitation) 
and d are often functions of ~ • 

We seek for the periodic solutions of (1) by help of an ansatz 

X:::::. a cost -(-o<.s/"d -I-bc.u$ 3t +/3 $/11 31" +-c;.CD~!J-T+r:'/I1ST(2) 
in which even harmonics can be omitted because no constant and 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
I UTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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no even nonlinearities occur in (1) as the integral equation 

method /4/ and the following analysis show. 

Introducing (2) into (1) and comparing the coefficients of 
C?S nt (n=1,2,3) yields the six coupled nonlinear equations 
Sln 

(0'_172.+3,A.l.-t-6-rB 2:,. 6v-C 1(:) -(-Af-~) +-r.,(t.}t-d/!"a) 

r/3ra.~Jtu4,;.fJ(){~) ';-{6~a;IKHf~i1) 'r/j,(~) -t-'1i1)+(6ttzb-6rot;1'I-~)(f) (3) 

+(6'1'afi Tty",,!> "I"'1 ... ){!;,) + (3v-1/-3~+ /J3J?~) '1-(IJY-6/l'h/::J([) /1:)) 
(~-9v~+6v-A.2.,"3"'B.2.+6)1'"C.1)()) +P3f.!/;)r9it) -f-3dl1/';-A(:)+f/./"a'''/ 
+':l.~ '~?:z-(:) i" ~(f:a.Z'!~:.) +(3ra.2-3Y'ct?t-6Ytth 'f-6n4l+P)(;j (4 ) 

.~(6ra.~1-6raJ-t1"'ot.6+'f.')(!;) . .,.. plj.(~r) 'f-91f(f) =/f:) 
and 

(<5'-2!»J2.t-6y-A2+6rBJ+3rC-1(;) r ~.?'i) +95/f) -r-S&l~) 
+?.z(:) -r'l:l-;..tx:j;- (3)'''"i/'-.3y-jJ2r.P3)1.!:) -r (6"'''/1 +'13Jfa«) (5) 

·f-(Jra2.-3J'""1J(/1.·f-fJ.J(i) -(6ra", P£Jr)t.,1) P plf.(!;g) 7-9¥'(1) ;=(t;) 
where 

A = jlq2..,.. /It!,2 / B -=JI,62-1-;.92,) C =Jlc2+,r.l. 
are the partial amplitudes of the first three harmonics of the 
solution. 

The usual "infinitesimal" nonlinear iteration with b=,t=c=(=O 
transforms (3) into the amplitude formula 

for the amplitude of the main harmonic only which shows the 
influence only of the harmonic parts (P1' Q1' f 1 , g1) of para
metric and forced excitation and includes as special cases the 
well-lmown formulae for pure parametric excitation and for Duf
fing-type forced oscillators. 

Taking for a "global" iteration also b ,~, c,J' into considera
tion, we get, for simplicity in case of P2=Q2=O, by a first 
step from (4) 
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(~~) =~($+!rt,(-;:/(- ~ l' ~(~~2-3"i\~a 1_L'/f31 
and from (5) a -fA. ;J «/ ($3/ 

(7) 

(y"j=:iP3(-~) +ir!3(:) -i(f:) (8) 
where for abbreviation the frequency i'unctions 

." "'1 
t !Jy:l_u) / 2SvZ ($' 

are introduced. By (7) the third harmonic of forced excitation 
(f3,g3)' by (8) the fifth harmonic (f5 ,g5) and the third har
monic of parametric excitation (P3,Q3) are brought into play. 
Insertion of (7), (8) into (3) leads to the pair of equations 

d~) ';-I!,f-,!) rFfot1 +G(:) -¥i~1(~V -/" f-1.'V'l'l!!~ =(f) 
where for abbreviation 

F= 6-- ~~·;-.Jr-A2+[(jJ/'+-t{./') +;'f/o}-+f/f) 1- 3t.' ,..-ZA 4-

G ==- f{., ,r6t'rq:,A.l.) 

f = f, +LP43 +L'I.,f/3 +iP3fs- -/-/Cj31/.r -,..3£r(a..2.-«.% -;-6L't'"a(k.9~ J 

g =9., +Lp"S3 -!l/.,h -IP.l7gs 1-/931i- +31.·r(a:.2:..or.~s~ --OL-"-a.O(.~ 
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is written. Due to the terms of global iteration containing i,j, 
these equations are nonlinear in a,~ , nevertheless in important 
special cases they admit analytical solutions in form of ampli
tude formulae. 

In Gn8~ of pure parametric excitation, fn=en=O, the amplitude 
formula of second approximation 

(1+ .2.i yo A 2.}"'[ 0',- .",.J..I-3 rA.2..;- t{io:, ~;'9,:l) + i~3 2.:1"'1,/;) -;.-3; .,-;4 ¥oJ.:l. 
=(1+2,,-rA'j~('1+ 'rL',-A:l)-?(p.,4'f-<'ft:J} - (-r+¥-£ r--A~2;;;.6 

can be found, e;eneralizinc; by i,j the infinitesimal first ap
proximation. In the same way a third approximation can be eva
luated which cannot be Given here. 

Similar formulae can be derived for an additional forced exci
tation. All these formulae reveal the influence of anharmonic 
compon~nts of parametric and forced excitation. 

Numerical evaluations have been done in two different ways, by 
numerically solving i) the approximate amplitude equations 

found and ii) the six coupled nonlinear equations 0), (ll-), (5) 
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for the Fourier coefficients of the solution via Powell method. 
The necessary startinE values for the Powell method could be 
found from the approximate analytical formulae. 

'.rhe numerical results showed a "fanning", that is a sensitive 
dependence of tl1.e solution on the stage of analytical or nume
rical approximD:t;ion, or even a breaking off of the resonance 
curves, for pure harmonic parametric excitation (for which a 
comparison is possible) just in the frequency domain where the 
Melnikov criterion led to the onset of chaos /1/. 

2. Asymn1etric Forced Exci tcition 

The differential equation 
z H 3 ( 

V X + 0'.>( + If-rx +dJ( = fl .;-f cos s t (9) 

where s is an intee;er and the constant g considers an asymmetry, 
covers also 3.11 additional quadratic nonlinearity as in Josephson 
junctions; the form (9) is obtained by 11 suitable shift of the 
coordinate. 

The 11.l1Satz for tlle solution shall now comprise also the s-th 
subharmonic solutions (s=3,2,1): 

X =/; +a.£.(.'J's1 +«5/~1 +- bCDs,U +;3's/~ :U· ·"'ccos 3t+.y..sln 3t. 

Insertion into (9) and comparison of coefficients loads now to 
the seven coupled nonlinear equations 

i31ld 

0-,," -+ 'fri;3+3rya-J..-p(,2)h +bY"a.IX,8 + 6Y-I;(A~B +c1= 8) (10) 

t-(~={12rl;:lJ-3rA.l.+6v-B2."f-6) ... eJ~) .f-clA)-rl.J.r1;hf-V·I-1.Jy-~(J(:) 
;12dcf!:s)';'12Yir(t)+3r(a.L-(X2)(f)-f-6ra.x(:fc)f-3r(J/~1h,)f-6Y-6it1·~c{tt/ 

+-(i' I '::: 6-rh /a.2 _.x.2 J.r (12..,...t.2r£I--A Lr3rEYt-6y--C1(}) +2c1(.:1) 
J...z ,B) ?( ..2.o.oC! ' 'l ~ : I 

.~ 1.Zr~c r-~) + 12Y-~r{a1 .-J; tt; 
Z(() .=1{t;:~-!:J:)rUr~6~'·-1.2J"f,A(a1 f3r(h~~~f-~) 

·r6rh!J(:;) + (1.2r!l".61--A.11-6y-B2.t-3y-C1(t) ·t-3d(.J:) ·-(ft) ( 12) 
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with the frequency functions 

We will confine ourselves here on the third subharmonic solu
tions (s=3), for which the equations (12) cont3in the forced 
excitation f and are thus, besides (10), the most important 
ones. They are linear in c,% i solvine; for these quantities, 
squaring and adding gives 

(13) 

where for abbreviation 

I.::: -+- -1.2"..j,~-6-Y-A2-6r-B2.-3rC.J. 
. I-:J ' "C 

and 

If we set, in first approximation, a=«=b=$=O, t;he two equations 
(13) and (10) determine 02 and h, for instance by inserting 02 

from (10) into (13), solving for h and evaluating 02 from (10). 

We can find a second approximation if we also take a,Q: into 
consideration. Then the equations (11) read 

where for abbreviation 

(14) 

respectively 

leads to 

3rAiJ-{ (J = /t~:~!:.;j~ of- d(~~=j:~;) ) 
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squaring and adding yields, besides of A=O, the quadrat;ic equa-
tion 

12~ fly- ~~C.l -,...d2.=(T 

for 02 in dependence of A2 and h2 which represents an ellipse 
in the coordinates A2 and 02 • 

These are some simple examples for analytical approximations 
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which can reveal, together with numerical evaluations, the be
haviour of subharmonic vibrations for the asymmetric oscillator 
at hand. 
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On Symmetry Breaking Bifurcations: 
Local and Global Phenomena 

by P. R. Sethna 

Z. C. Feng and X. Yang 
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University of Minnesota 

Minneapolis, MN 55455 

Abstract This study is concerned with local and global bifurcation analysis of a system of 

equations with symmetry that occurs frequently in the study of surface waves in containers and 

vibrations of plates. 

1 • Introduction 

In this work we give a study of dynamical systems that have two linear modes with 

frequencies that are nearly equal, when excited strongly so that nonlinear effects have to be 

taken into account. The occurrence of two nearly equal frequencies and other symmetries in the 

equations is often, but not always, due to physical symmetry in the system under investigation. 

Specifically, we discuss certain types of equations with symmetries that occur in the 

study of surface waves in containers with a fluid, vibrations of beams and plates, etc. See, for 

instance, Feng and Sethna (1989), Yang and Sethna (?), Nayfeh and Pei (1989), Miles and 

Henderson (1989) and Umeki and Kambe (1989). 

We give here results based on local as well as global bifurcation analysis with physical 

interpretations in the context of surface wave motions in nearly square containers subjected to 

vertical sinusoidal excitation as discussed in Feng and Sethna (1989) and vibration of nearly 

square simply supported elastic plates with in-plane boundary displacement as given in Yang 

and Sethna (?). 

2 . The Nature of the System 

We work with "amplitude equations" of the form 

(2.1) 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium StuttgartlGennany 1989 
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where Z1 and Z2 are complex variables and a * indicates complex conjugates. All other 

quantities are real and d>O and 13 can be taken positive without loss of generality. The constant 

d represents damping. The constants cr and 13 represent the deviation of the excitation frequency 

from the natural frequencies and the difference in the natural frequencies, respectively. The F 1 

and F2 represent amplitude of the parametric excitations in each mode. The 1tj, j=l, 2, 3, the 

coefficients of the nonlinear terms, determine the nature of the system under investigation. 

They are, for instance, -2.349,0.1803, and -3.647 in the case of (0, 1) and (1, 0) model 

motions of surface waves in the appropriate dimensionless variables and they are B, 2D and D, 

with Band D positive constants, in the case of nearly square plates, with Band D varying 

according to the mode numbers. 

The system (2.1) has Z2E9Z2 symmetry, i.e. it has the invariance (Z1, Z2)H 

(-Z1, Z2)H(Z1,-Z2) when 13 is not zero and an additional (Z1. Z2)H(Z2, Z1) symmetry, Le. 

D4 symmetry, when 13=0. If in addition 7q-1t2-1t3=0 it has 0(2) symmetry generating the 

equivariance (Z1. Z2)H(COSeZ1+sineZ2, -sineZ1+coSeZ2) o<eg1t. The transformation 

V=Z1+iZ2, W=Z; +iZ; (Steindl and Troger, [1987]) makes this more clear. 

We now give below a brief summary of a local and global analysis of bifurcation 

phenomena which is based on Yang and Sethna (?) and Feng and Sethna (1989), (n). 

3 . Local Analysis 

The fixed points of (2.1) represent wave motions and the stability of the fixed point 

determines the stability of the waves. Periodic solutions of (2.1) represent almost periodic, 

amplitude modulated waves and what is true of fixed points regarding stability is also true of 

periodic solutions. 

A local bifurcation analysis in (cr, 13) space has been completed in the case of surface 

waves in the case of symmetric excitation F1=F2 and is given in Feng and Sethna (1989). In 

the case of waves in plates the same is done both for the symmetric and antisymmetric excitation 

F 1 =-F2 and the results are given in Yang and Sethna (?). Both co-dimension one and two local 

bifurcations are shown to occur. All co-dimension one bifurcations occur in the case of water 

waves while all but Hopf bifurcations are shown to occur in the case of plates. 

We note that fixed points Z1=O, Z2;t() and Z1""0, Z2=O are both possible. From this it 

can be concluded that motion is possible in either mode. These are called one mode motions. 

Fixed points \vith both Z1T'O and Z2;t() are also possible. These represent mixed mode motions. 

These motions can be standing waves when Z1 and Z2 have the same phase angle. When Z1 

and Z2 do not have the same phase angle, we have traveling waves of different kinds. One 

mode motions and mixed motions of both kinds occur in the two studies mentioned above. In 

the case of water waves, amplitude modulated waves arising from Hopf bifurcations are also 

shown to occur. 
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The physical meaning of the excitation is clear. In the case of plates, all four edges 

move in and out in phase in the symmetric case. In the anti symmetric case, since the excitation 

is at twice the frequency, the edge displacement has a phase so that the edges move in and out in 

a sequence in either clockwise or anticlockwise directions. In the case of water waves, the 

physics is similar except for the fact that the container edges move vertically. 

In Figs. 1 and 2 are given bifurcation diagrams for a square plate (with \3=0, i.e. D4 

symmetry) in the case of symmetric and antisymmetric excitations, respectively. It is to be 

noted that the dominant motions in the symmetric and antisymmetric cases are respectively 

standing and rotating waves when the detuning is small. The rotating wave, however, is stable 

for all reasonable values of de tuning of the external excitation, while the standing wave gets 

unstable at a critical value of detuning. 

In Fig. 3 we give a bifurcation diagram for the case of water waves and experimental 

data, both as given in Feng and Sethna (1989). 

4 . Global Analyses 

We follow here a procedure similar to Holmes (1984) and Wiggins (1988) and rely on 

some mathematical results of Robinson (1988) to get conditions on the system parameters for 

which Smale horseshoes and chaotic dynamics are expected to occur. 

Let d=O and Fl=Efl and F2=Ef2when E is small in (2.1). We thus study the case when 

energy dissipation is zero and when the excitation is small. 

Let 

(4.1) 

in (2.1) and introduce a second canonical change of variables by using the generating function 

then if 

(4.2) 

and if 



www.manaraa.com

284 

where 

(4.3a) 

(4.3b) 

then the equations become 

h = ~~~ = 4PI(P2-PI)sin2QI + e[2fIPlsin(2QI+2Q2)) 

• oR QI =~ =-2~ + 2(2PI-PV(<x-cos2QI) + 

e[flcos(2QI+2Q2) - f2 cos2Q2] (4.4) 

h = ~~ = e[2fIPlsin(2QI+2Q2) + 2f2 (P:Z-PI)sin2Q2] 

• oR <a = dP; = cr + ~ - 2PI(a-cos2QI) + ef2 cos2Q2 

Analysis of the unperturbed system 

When e=O we have the unperturbed system 

· PI = 4PI(P2-PI)sin2QI, 

· P2=O, (4.5) 

in. = cr + ~ - 2PI (0.- cos2QI) . 

We note that (4.5) depends on the parameters cr, ~ and a. and P2=P20 a constant. A 

detailed analysis of (4.5) in Feng and Sethna (??) for all values of the parameters shows that 

there are six qualitatively different kinds of flows depending on six open sets in the ( a., ~O) 
plane. Of these six flows, four contain heteroclinic cycles of three distinct kinds. When these 

cycles break under perturbation, Smale horseshoes are shown to occur. Thus there are three 

distinct types of geometric structures. 

Our analytical procedures require the explicit computations of the orbits of the 

heteroclinic cycles in (PI QI) space and furthermore the explicit solutions, as functions of 1, of 
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the entire vector (PI (t), Ql (t), P2=P20, 02(t)). The computations are difficult and of 

considerable complexity. 

The Melnikov Function 

Our global results depend on the computation of the Melnikov function on the 

heteroclinic orbits. Specifically we compute 

T~ 
J -

M= lim f ~ dt (4.6) 
j-->_ -T'! 

J 

where the integrand is computed on the heteroclinic cycles and TJ and 1)'~oo as j~oo in an 

appropriate manner. The detailed calculations in all cases lead to an expression for M with the 

following structure. 

M = sin 2Q20 m(P20, cr,~, n, fl and f2) 

Q20 is a parameter. It can be shown that m remains bounded and in general away from zero 

with the result that M has simple zeroes as a function of 020 and this gives us the result 

regarding the occurrence of Smale horseshoes. 

In Fig. 4 we give the geometry of the coordinate system for the unpertubed system and 

in Fig. 5 the coordinate system for the Poincare section for 02 a constant. The results of the 

theory have been checked against numerical computations for specific parameter values in the 

six open sets in the parameter space mentioned above. Three dimensional Poincare sections of 

the flow indicate only almost periodic behavior in those cases when the unperturbed system 

does not have heteroclinic cycles and show distinctly chaotic behavior in three dimensional 

Poincare sections when the unperturbed problem has heteroclinic cycles. 

We remark that although these results are proved for Hamiltonian systems, since the 

Smale horseshoes are structurally stable they will persist, though somewhat modified in 

structure, in damped systems; the damping, however, in all probability, will have to be very 

small in most cases. 
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cr 

Figure 1. Bifurcation diagram of square plate with symmetric excitation. ( ---
pure one-mode,- - - - standing waves, --_._. -rotational waves.) 

cr 

Figure 2. Bifurcation diagram of square plate with antisymmetric excitation. (---
pure one-mode, ----standing waves, _._·_·-rotational waves.) 
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Figure 3. Experimental verification of bifurcation diagram. The notation for 

experimental data is: 0, standing wave; 0, rotational wave; 6., pure one-mode. 

P2 

Global Bifurcations 
Figure 4. Coordinates for unperturbed Figure 5. Coordinates for Poincare section, 

system. Q2=eonstanL 
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Summary 
A method for suppressing chaos in a class of periodically forced 

oscillators is presented. The method involves the manipulation of higher 
harmonics in the periodic excita~ion such that the homoclinic tangles 
which lie at the heart of the chaos ~£e destroyed. The procedure is dem
onstrated via a particular example: an inverted pendulum with amplitude 
constraints subjected to periodic base excitation. The general theory is 
developed using a Melnikov type method (see [1-3]) and is supported by 
some experimental evidence. 

Introduction 

Virtually every example of chaos observed in forced oscillators (as 

well as in autonomous systems and discrete maps) is a manifestation of the 

Smale horseshoe or one of its generalizations [3]. This is true indepen

dent of the "route to chaos", e.g. period doubling, quasiperiodic break

down, intermittantcy, etc. These horseshoes are not strange at tractors , 

but are chaotic saddle type invariant sets and are thus not realiazable 

steady states in practice. In order to prove that sustained chaos, that 

is, a strange attractor, exists more is needed; specifically it must be 

shown that the horseshoes lie in an attracting set which contains no sta

ble motions of finite period. Such a result is not available for even the 

simplest nonlinear forced oscillators. Regardless, the existence of horse

shoes provides the recognized features of chaos including sensitive depen

dence on initial conditions and nonperiodic solutions, and their presence 

is required before chaos, either transient or sustained, is observed. 

The unifying theme in these types of chaos is that of homoclinic 

behavior - that is recurrent behavior near a saddle point, which contain 

horseshoes in a wide range of circumstances [3]. There does exist one 

class of problems for which one can prove (usually in an asymptotic sense) 

parameter conditions for the existence of horseshoes in specific systems; 

this is the method of Melnikov [1,2) and its generalizations [3). It pro

vides a boundary in parameter space which separates domains for which the 

system does and does not have horseshoes near a specific saddle type invar

iant set. On the "no horseshoe" side of the boundary there can be no chaos 

associated with the invariant set in question, while on the other side the 

system will exhibit at least transient chaos, and possibly steady state 
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chaos. Moon et al. [4] used this fact, along with extensive computer simu

lations and experiments, to label homoclinics as a "precursor to chaos." 

Also, the Melnikov criteria provides the conditions for the fractal basin 

boundaries which separate initial conditions in phase space leading to dif

ferent long term behavior (see [5]). In this paper a Melnikov type method 

will be used as a guide for designing inputs which are optimal (in a sense 

to be defined) in the elimination of chaos. 

Homoclinic orbits are solutions which are forward and backward 

asymptotic (in time) to a saddle-type fixed point (or a more general invar

iant set [3]). They occur at the intersection of the of the sets which are 

forward and backward asymptotic to the saddle point, i.e. the stable and 

unstable manifolds, respectively. Melnikov's method measures the separa

tion between these manifolds and can thus predict when such an intersection 

occurs. The connection between transverse intersections, horseshoes, and 

chaos, and the fact that the separation can be measured without solving the 

equation directly, provides the method with its predictive capability. 

Introductions to the method can be found in [2] and [4] and extensions and 

generalizations in [3]. 

The present treatment will consider a specific forced oscillator for 

which the separation for a general periodic input can be measured exactly 

using an extension of the ideas demonstrated in [6]. The method of 

determining those inputs which are optimally suited for extinguishing chaos 

(subject to certain constraints which make the problem non-trivial) is then 

presented along with one piece of experimental evidence in support of the 

analysis. 

The System Under Investi&ation 

The physical device is depicted in Figure 1; it is the same as that 

considered in [6,7], except that the base excitation is taken to be a gen

eral periodic function of time. After rescaling, the equation of motion 

governing the pendulum angle measured from the vertical, including impacts 

with the constraints, is 

'" 
x + 25x - x - 2 ~j sin (jwt + ~j) Ixl<l (la) 

j-l 

x -> - r x Ixl=l (lb) 

where x = OjOmax (Omax < 10· for linearization), 6 is the free flight 

damping ratio, w is the dimensionless driving frequency, r is the coeffi-
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cient of restitution for the impacts (which are assumed to be instanta

neous), and ~j and ~j are the excitation amplitude and phase for the jth 

harmonic, respectively. Details are provided in [6,7]. This system is 

qualitatively similar to the widely studied Duffing oscillator with nega

tive linear stiffness [1-3]; when unforced it has an unstable central 

position (x-O) with stable rest positions on either side (x-±l). The phase 

portrait for the 6-0, ~j-O system is shown in Figure 2, with y - x; the 

impacts are taken to be instantaneous changes in velocity at x - ± 1 ac

cording to equation (lb). Note that there exist two homoclinic motions for 

the origin when r 1 (elastic rebounds). For ~j ~ 0 the unstable equi-

librium becomes a saddle type periodic motion which does not involve im

pacts, under the condition that the peak value of the particular solution 

of (la) not exceed unity. This saddle type motion has stable and unstable 

manifolds, yS and WU , respectively. 

x=-l 
y x=l 

Figure 1 Figure 2 

Now suppose that this constrained pendulum is subjected to a purely 

harmonic input, say ~lsin(wt) with ~l-O and ~j=O for all j~2, and has 

transverse homoclinic solutions, i.e. WS and WU intersect transversely. 

x 

Can (~j' ~j) for j~2 be chosen so as to separate the manifolds? The answer 
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is yes, under certain conditions. In order to demonstrate the 

circumstances under which this is possible, and to demonstrate the method 

of choosing optimal values for (7j , ~j)' j~2, the separation between WU and 

WS must be computed. The separation is computed in the Poincare Section 2 
- (x,y,t): x-I, y>O) as follows: The homogeneous and particular solutions 

of (la) are written in the form 

sl(t-to) s2(t-to) 
x - ~ + xp - c l e + c2 e + 

sin (jwt + ~. + ~.) 
J J 

sl - - 6 + Jl + 62 ; s2 - - 6 - Jl + 62 

tan (~j) - - 26jw/ (1+(jw)2), ~~ s ~j s 2~; 

rj - (1 + (jw)2 + (26jw)2 1l/2 . 

(2) 

Those solutions which start in 2 n WU must approach xp as t ~ - wand must 

s2t 
therefore have c2 - 0 (since s2 < 0 and e ~ w as t ~ -w). Employing 

initial conditions in 2 ' (x,y,t) - (l,yU, to), along with c 2 - 0, yields 

the curve for yU(to), i.e. 2 n wu : 

u 
y (to) - sl (1 - x (t » + x (t ) pop 0 

To determine 2 n WS the impact rule must be included in the analysis. 

Points in WS must be asymptotic to xp as t ~ w, therefore c l must be zero. 

Using this and the inverse of the impact rule yields the curve 2 n ws : 

yS(to) - - [S2 (l-xp(to» + xp(to)l/r. 

The separation is then given by 
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Standard trigonometric manipulations then provide the separation as a func

tion of the phase to in the following form 

D ~ 

d(to ) - 20 + L Dj sin (jwto + ~j + ~j + vj ) 

j4 

D o 

tan (vj ) - (l+r)jw/(slr + s2)' ~/2 S Vj S ~; 

Aj - [(1+r)2 (jw)2 + (sIr + s2)2]1/2 

(3) 

It is important to note how the amplitudes of the input and separation 

harmonics are related, in particular the ratio 1j /Dj - r 1j /Aj . In order 

for the separation series to converge, the Dj's must decrease by at least 

. -1 . 
J as J ~ ~. Since r1./A. grows like rjw/(l+r) for large j, this implies 

J J 

that the 1.'S are asymptotically a constant (at best) as j ~~. This leads 
J 

to a divergent and unrealistic input. A practical solution is to design 

the optimal input for one additional harmonic input. The separation for a 

purely harmonic input is composed of a negative constant, Do/2, and a 

purely harmonic term of amplitude Dl , frequency w, and relative phase ~l + 

vI. It has tangent zeroes when 1Do/21 - Dl and transverse zeroes for 

1Do/21 < Dl ; this yields the criteria for chaos obtained in [6]: 

(>0). 

The chaos which occurs when the above condition is satisfied involves 

motions in which the pendulum undergoes irregular sequences of impacts at 

the left and right. If a symmetric pair of stable periodic motions exist, 

one each impacting on only a single side, then the domains of attraction 

for those two steady states will have a fractal boundary for 11> 1lcr [5]. 

The Optimal Solution for One Additional Harmonic 

If it is possible to eliminate the zeroes of the separation, then 

the chaos can be destroyed. The optimal input is the one which reduces as 

much as possible the amplitude of the oscillating part of the separation 

d(to). For the present case the goal is to determine 
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(j'~j'~j)* - j'~~~~j 
j~l 

That j* - 3 is obvious; -the third harmonic can reduce the peak better than 

any other harmonic (the even harmonics are useless here). Also, the 

.~* optimal choice will have the first and third harmonics in phase, hence ~3 -

j(~l+vl) - (~3+v3)' The problem is then essentially reduced to determining 

* min 
a - a 

(4) 

* Standard'operations yield a 1/6 with the peak reduced by a factor of 

j3/2. Following back through the calculations leads to 

* ~3 - ~lAlr3/6 A3r l · 

Summarizing to this point, the optimal input is given by 

~l sin (wt) + ~~ sin(3wt + ~~) 

and it results in a separation of 

Do/2 + Dl [sin (wto + ~l + VI) + (1/6) sin (3(wto + ~l + VI»]' 

The corresponding criteria for chaos is now 

~ 2 
~l ~ ~lcr, 

that is, about a 15% increase in the original harmonic force amplitude can 

be achieved before introducing chaos. 

The addition of the single optimal input harmonic is guaranteed to 

separate the manifolds for ~lcr < ~l < 2/j~ ~lcr' In addition, it ~ay 

well be that it is practically useful for eliminating steady state chaos 

even without untangling the manifolds. Figure 3 shows the inputs and the 

response of an experimental apparatus (described in detail in [7]; it has 5 

: 0.03 and r : 0.95) for ~l : 1.24 and w : 8.0. The optimal additional 

harmonic input (which cannot untangle the manifolds here since ~l is 

significantly greater than ~lcr : 0.5) for this case is a third harmonic 

* -with approximately one half the amplitude of the first, ~3 - ~1/2, and 

* -approximately in phase, ~3 - O. Addition of this input results in the 
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response shown, simple periodic boundary on one side. Both the chaotic and 

periodic steady states shown in Figure 3 are robust, and the only ones 

found at those parameter values for several initial conditions (for their 

respective inputs). 

Conclusions 

Base acceleration 

first harmonic 

plus third 
harmonic 

Figure 3 

The example above demonstrates the general method and provides some 

evidence that it works. More thorough studies of both experimental and 

numerical nature should be carried out. Also, it may be that the addition 

of the third harmonic leads to problems, possibly in the form of nonlinear 

resonances; this must be considered on a case by case basis. Finally, it 

should be noted that the 15% increase in the critical value of ~l is a 

general result for cases in which the separation is given by a constant 

plus a pure harmonic and one additional harmonic is added; all such 

* situations will lead to finding Q as in condition (4). 
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SUMMARY 

This paper deals with electromagnetic and stored energy needle printer sys
tems. Mechanical models and differential equations of motion are developed 
in order to simulate printing characteristics of both systems by numerical 
integration. For examp1 e, need1 e di sp1 acements, vel oci ties, and acce1 er
ations, peak values of the printing forces and the period of contact between 
the needle and the ribbon can be calculated. Different modes of failure, 
as instability of the synchronous needle motion, or a break-down of the 
printing force with increasing printing frequency, are investigated for 
various design parameters of the system. All calculations can be carried 
out on a personal computer, and very good agreement is obta i ned between 
computed and measured results. 

1. INTRODUCTION 

The printing operation of a single needle must be stable up to a frequency 
range of about 2000 Hz, and synchronous with the applied current of the 
electromagnetic circuit. No feedback control is applied between the needle 
displacement and the driving current, and particular attention has to be 
paid to the stability of the synchronous printing mode. Further, the peak 
values of the printing forces must stay within a narrow band width of magni
tudes independent of whether the needle performs a single shot or is operated 
in a periodic mode (permanent fire). Beside that, the needle impact forces 
have to be rather insensitiv with respect to changes of the paper properties, 
number of paper sheets, need1 e stroke, and manufacturi ng to1 erances. In 
[1], digital simulation models have been introduced to predict characteri
st i cs of the electromagnet i c and the stored energy pri nter systems, see 
Fig.l and Fig.2 , respectively. In the electromagnetic system the armature 
1 is pressed against a damper mass 3 by a helical spring 4 in a static 
equilibrium position. When the driving current in coil 5 is turned on, a 
magnetic flux is generated in the ferromagnetic circuit and an attractive 
magnetic force, acting within airgap 7, accelerates the armature 1 towards 
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the paper-ri bbon-pl aten system and generates a dot. When the current is 
turned off, the needle rebounds and moves towards the damper system 3 which 
di ss i pates the ki net i c energy of the armature and stabi 1 i zes the needl e 
motion. By turning on the current again, the process is repeated. Fig. 2 
shows a schematic diagram of the stored-energy printer system. In the sta
tionary state the armature lever 1 (carrying the needle 2) is attracted by 
a permanent magnet 8 and pressed against the ferromagnetic pole 6 and the 
damper ring 3. In this static equil ibrium position the leaf spring 4 is 
prestressed, stori ng potential energy. By turni ng on the current in coil 
5, a magnetic flux is generated, acting in the opposite direction of the 
permanent field. Thus, the armature lever is released from the pole, the 
needle is accelerated towards the paper-ribbon-platen system, and a dot is 
produced. By turni ng off the current, the permanent magnet attracts the 
armature 1 ever back to the pole and the damper ri ng. Because of i nterna 1 
damping within the lever material and the damper ring the remaining kinetic 
energy of the lever is dissipated and stabilizes the system. By turning on 
the current, the process is repeated. In both printer systems the needle 
motion must synchronously follow the frequency of the applied current. For 
an acceptable printing process the transient period from zero (static) 
initial conditions to periodic synchronous response of the needle must be 
extremely short. 

2. SYSTEM MODELING AND EQUATIONS OF MOTION 

In general, a printer is composed of four subsystems: the oscillating arma
ture, carrying the needle, the damper system, the paper-ribbon-platen system 
(PR-PL), and the electromagnetic excitation system. Each of these components 
must be modeled carefully according to measured properties. 

Modeling of the electromagnetic components and the PR-PL-system. 

The time response of the appl ied current is approximated in the analysis 
by trapezoidal functions as shown in Fig.3. The geometric structure of the 
ferromagnetic circuit is rather complicated for both printer systems. There
fore, a numeri ca 1 cal cul at i on of the time response of the magnetic fl ux 
density within the primary airgaps 7 (see Fig.1 and 2) is extremely laborious 
and is not applied in this simulation model. Experiments have been carried 
out to measure the attractive magnetic forces FM(g,t) in the primary airgaps 
in terms of the coil current i(t) and the airgap length g. An empirical 
equation of the form 

(1) 
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has been introduced to match the experimental results by the parameters 
FMo, io, go' and the exponent a. For the electromagnetic system n = 0, and 
for the stored energy system n = 1. Since the airgap length g is not constant 
and varies with the armature displacement, the exciting magnetic force FM 
depends on both the applied current and the needle displacement. 

The PR-PL-system of the printer, see Figures 4 and 5, is modeled as a 
visco-elastic surface with either piecewise 1 inear or nonl inear spring 
characteristics. Inertia effects of the ribbon and the paper are neglected. 
For different numbers of paper sheets the stiffness and damping parameters 
of the PR-PL-system have been obtained from experiments. Note that the 
contact (printing) force FN between the needle and the ribbon surface is of 
compressive type only, i.e. even for a linear visco-elastic PR-PL-system the 
dynamic equations of motion for the needle are highly nonlinear. 

Modeling of the electromagnetic system. 

Fig.4, for example, shows a two degrees of freedom mechanical model where 
xA and xD represent the displacements of armature and damper mass, respec
tively. The contact forces FDA between the armature and the damper mass are 
introduced as one-sided compressive and visco-elastic. From Fig.4 the equa
tions of motion can be written in the simple form 

-FDA + FS + FM + FG + FN 

FDA + FDH 

(2) 

(3) 

where FS is the linear restoring spring force, FG = -IFGlsgn(xA) is a dry 
friction force exerted by the needle guide bearing, FDH is a linear visco
elastic force between the housing and the damper mass, and FN is the needle 
printing force as mentioned above. Equ.(2) and (3) are highly nonlinear and 
no analytical solution is available. Therefore, a digital simulation language 
is applied to obtain numerical results, see [2]. 

Modeling of the stored energy system. 

Fig.5 shows a schematic diagram of the mechanical model. Magnetic pole 
contact forces FP(XM,XM) and damper forces FD(XD,XD) are introduced as one
sided compressive and visco-elastic. The crooked needle is represented by a 
massless spring of effective stiffness kN, attached to the free end of the 
armature lever. The lever is modeled by finite elements, and a modal model, 
including 3 to 4 major bending modes up to a frequency range of about 25 
kHz, is used for the simulation analysis. Beside the needle peak displace-



www.manaraa.com

300 

ment xN the deflections xM, xo' xA are introduced as master coordinates by 
the vector ~ = [XM,XO,XA]T, see Fig.5. The modal equations of motion for the 
armature lever have the diagonal form 

with 

i + 2 Q i + Il2 Y.. = t. T !! T f. 

f.(~,~) = [FP + FM, FO, FN + FG]T 

~ =!!t.Y.. 

(4) 

(5) 

(6) 

In Equ.(4), Y.. represents the modal coordinates, Q is the internal damping 
matrix of the lever, t. is the reduced modal matrix obtained from a FE-ana
lysis, and !! is an incidence matrix. The above equations are highly non
linear, and a numerical solution is obtained by digital simulation, [2]. 

3. NUMERICAL SIMULATION AND RESULTS 

Electromagnetic printer system. 

Fig.6 shows typical time response characteristics of a stable synchronous 
printing mode at 2000 Hz. The nominal printer parameters are indicated in 
the figure caption. Starting from zero initial conditions at z=O, the re
quired synchronous limit cycle of the needle motion is immediately approached 
after the first impact, i.e. there is practically no modulation of phase and 
magnitude of the printing force within a transient period. The solution is 
stable within practical tolerances of the needle stroke, the printing fre
quency and the paper stiffness values. The maximum printing force in this 
example is about 13 N, the damper impact force reaches 18.5 N; this cor
responds to maximum accelerations of the needle of about -8000 g and 11000 
g, respectively. The printing contact time is about 60 ~s, the impact mo
mentum is 0.4 mNs. High impact forces between the armature head and the 
damper system may gradually lead to extensive wear-out or plastic deforma
tion which finally increase the initial airgap length g(O), see Fig.4, and 
thus decrease' the magnetic driving forces. This effect may destabilize the 
synchronous printing mode. Fig.7(a) shows a phase plane projection of the 
needl e motion for increased values of the a i rgap and the nomi na 1 needl e 
stroke at a frequency of 2500 Hz. A long transient period of the needle 
motion over about 35 current cycles can be observed which finally approaches 
a periodic subharmonic attractor of second order, see Fig.7(b). The system 
seems to be very close to a steady chaotic motion since extremely small 
changes of the initial conditions lead to dramatic changes in the needle 
motion. Note that the electromagnetic printer system may roughly be con
sidered as a double sided impact OSCillator, and therefore, the appearance 
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of a chaotic regime is a characteristic feature; for example, see [3]. For 
practical operation of a needle printer, a long transient period or chaotic 
motions are totally unacceptable even if a coexisting synchronous solution 
is possible. Also, subharmonics of order n >1 cannot be used for regular 
printer operation. 

Stored energy printer system. 

This printer system is much less sensitiv with respect to chaotic needle 
motions. In Fig.8(a) a stable synchronous time response of the needle motion 
is shown for an exciting current frequency of 1500 Hz. Practically no trans
ient period can be observed. The peak value of the printing force is about 
8 N in this example. The needle contact period is about 100 ~s and the impact 
momentum is 0.4 mNs which is the same value as obtained for the electro
magnetic system. However, the stored energy printer produces the dot in a 
"softer" way than the electromagnetic system. It is worth to note that for 
increasing frequency the transient period increases and the printing force 
magnitude finally breaks down to unacceptable low values, see Fig.8(b). 
Here, the synchronous component is still predominant but is slightly modu
lated by a third order subharmonic. In general, the mode of failure for 
the stored energy system is 1 ess cri t i cal than for the electromagnetic 
system. Fig. 9 shows the peak forces in terms of the pri nt i ng frequency. 
There is a very good agreement between measured and numerical results. The 
force break-down frequency limit can be predicted also very accurately. 

4. CONCLUSION 

Optimal simulation models have been developed for two different types of 
electromechanical needle printer systems. A minimum number of degrees of 
freedom has been introduced in order to minimize the numerical effort and 
run the models on a personal computer. Reliable predictions of printer cha
racteristics can be carried out by numerical simulation and a substantial 
percentage of printer developing costs can be saved. 
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Fig.5. Mechanical model of the 
stored energy system. 
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The Approximate Criteria for Chaos in 
Multi-well Potential Vibrating Systems 

W.SZEMPLINSKA-STUPNICKA 
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Summary 

Application of perturbation methods to the study of transition 
to/from chaotic motion and determination of the system parameter 
critical values are discussed. The qT-periodic motion is definied 
by low order approximate solution obtained by perturbation 
methods. Higher order instabilities are examined by considering 
the variational Hill's type equation. The instabilities which 
bring a build-up of 2qT harmonic components, or even order 
harmonics in symmetric systems, are determined in the first or 
second approximation, and are identified as the approximate 
criteria for chaos. 

Observations and assumptions 

Recent studies of chaotic phenomena in nonlinear oscillators used 

extensively qualitative and computational methods. Engineering 

applications, however, demand also closed form formulae, that 
might give an approximate estimation of the system parameter 

critical values, i.e. the values for which chaotic motion can 

be expected. 

In this paper we consider nonlinear oscillators governed by: 

X + f( X, X J Yi) = 0 I 

f ','.1) h' 2. 3 ( 1) (X, X, Y[ == X +O<fX +d,2X +o(,X + 'Pcosvt +x'PcosVf+ ... J 

and two scenario s for transi tion to/from chaos [1 - 51: 
first period 

T- eriodic uns 
motion 

(a) 

cascade 
of P.O. 

CHAOS 

crisis (jump) 

T- eriodic uns m m. 
or fixed point ~ 
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symmetry breaking bif. unsym.qT-periodic 

mmetric "'~ motion CHAOS 

cascade of P.O. 

(lJ) 

We assume that the value of bifurcation parameter ~J where chaoi 

occurs, is close to the first period doubling in scenario (a), 

and is close to the symmetry braking bifurcation in (b). 

Moreover we approximate the periodic motion which undergoes the 

first bifurcation by a few term Fourier series: 

X(J(f)::::;Xo(t"'''rJ~=~~1,:,: .. C05(-1 frYn) J (2) 

The approximate criterion for chaos is now reduced to determination 

of two cri tical values YW .1 and ~"'".2' which in turn, are 

identified with instability limits in the variational Hill's 

type equation. The value VWJ is associated with the higher order 

instability of x (t), the instability which bringsa build-up of 
2QT harmonic com~onents in the unsymmetric system, Vp~ , or 

the even order harmonic components in the symmetric solution, 

VSB ' The.crisis type critical value Y012 is identified with the 

first order instability of x (t), the instability which coincides 
o 

with the point of vertical tangent on the resonance curve. 

Fig. 1. Resonance curve and scenario (a) of the transition to 
or from chaos in the unsymmetric system, f(X,x)~ - f(-x,-x) 
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Period doubling and symmetry breaking instabilities in the 

variational Hill's type eguation 

We consider the qT-periodic solution (2) obtained by perturbation 

methods and the associated variational equation: 

(3) 

where 

Rt(f) + Q:J{f) = ?flr':) =~I (t+71)' 
x. "OX:Xo I 

SlI{t)- )l1(f r r;T) I 92 {t}.: 9,2{t+ fJ) (4) 

From the Floquet theory we know that the following two types of 
unstable regions exist: 

dX{f}= ed-I(f} , £ - real and posi ti ve 

Ii (f) = sf. (f to Ttj 
or, 

Br ff) = ~ (I T 271) j 

(a) Period doubling instability can occur only if Q,{f)=/=O,that 

(5a) 

(5b) 

(5c) 

is if 7f=~T. The condition is atisfied if the system is 

unsymmetric, f(x, x) I -fe-x, -x), or, if xo(t) is unsymmetric 

(An f 0 n = 0, 2, .. in eq. 2). To examine the instability we 
rewrite eq.(3) into: 

J)( of- hJi< +- Ex [Ao + 2. Ap cos(e.;'t- .,. ¢p8= 0 
pd,2,I... (7) 

and assume Pr,{f) in the form of truncated Fourier series: 

R 

rf. (f)= ~(b COS nyt + b Sifl. n~f) . YJr L n1 ,20. n2 2t1. J 
n::i, 3/ r.... r r 

(8) 

Next we insert eq. (8) into eq. (7) and equate to zero coefficients 

of the harmonic components/which are assumed in the solution (8). 
Thus we arrive at 2n simultaneous homogeneous algebraic equations 
for bl1 J b12.,·· ... bn2 • Characteristic determinant of the 
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equations gives us the desired relationship between driving 

frequency j) and the ampli tudes AD 11, .... J to be satisfied at 
J 

the stability limit: 

(9) 

This also leads us to a relationship between Y and the exci ta

tion ampli tude 1> : 

F.z ( Y PJ)} p) = 0 j (10) 

Within the unstable region the 2qT harmonic components begin to 

grow over time and nonlinearities induce 2qT periodic stable 

solution: 

(f) -
'iT' 

(b) Symmetry breaking instability. 

(11) 

Now we consider symmetric system, f(x, x ) = - fe-x, -x ), and 
symmetric solution x (t) =- x (t + ().T ). Consequently o o-r;z 

Q 1 (f) :::; OJ rrt = 0 C;7 . 
The symmetry breaking instability is now definied by eq. (5b) 

and results in a build-up of even order harmonics: 

(12) 

By applying the harmonic balance method we again obtain a closed 

form formulae to be satisfied at the stability limit: 

(13 ) 

Within the unstable region the even order harmonics begin to 
grow over time and consequently the symmetric solution bifur
cates into an unsymmetric solution: 

5 

xo(f)r
'f 

(14) 

I 
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Approximate criteria for chaos in a model of a buckled beam 

We consider the classic now two-well potential system, a 
mathematical model of a single-mode motion of a buckled beam 
under transverse harmonic excitation 1, 2 

The system has three positions of equilibrium: 

xi)= 0 - unstable, x~~= +1 and x~~= -1 - stable fixed points, 
and can exhibit periodic motion around one stable rest point 
(Small Orbit), periodic motion which encircles all three rest 

points (Large Orbit~ or chaotic motion. 
Small Orbit is governed by equation of motion in the form 

(15) 

irZ "'hz;.jz~"'fz3='PCOSyt J z==x:;:l) (16) 

The main chaotic region occurs in the neighbourhood of the 
principal resonance, that is close to Y=J.,and follows scenario 

(a) of transition to/from chaos (see also Fig. 1). Here Large 

Orbit does not interfere and coexists with Small Orbit/or with 
chaotic motion. Therefore,the approximate criterion for chaos 
in the region was derived by considering eq.{16}[2]. First the 
second approximate T-periodic solution was 
perturbation scheme as: 

derived by a 

ZoN):::: Cit COS (vf+!4)-4 a/ 1- ;fa/cos(2yfr.2f4) i 

p (17) 

Then the period doubling instability limit was determined by 

assuming two frequency solution in the Fourier series (8) and 

the relationship (9) at n=O was reduced to the second poly
nominal in p4: 

j) 4 T 2:8 p~ +C::::O 
P.D 'j>:b I 

The crlSlS type transition to/from chaos, ~ ,was determined 

by considering the point on the resonance curve at(Y),which 

has verti cal tangent i. e. 1,= 0, wi th the results: 
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(19) 

The theoretical and computer simulation results presented in 

Fig. 2a show surprisingly good coincidance: 

(a.) 
p 

,..,. 
0.06 _..., 
- - - -,Melni/co V C'I'"· 

0.6 o.e 1.0 V 

P 
0.20 

0.15" 

\~':j(jj~ 

0.3 0.4 

(b) 

0.5' ~ 

Fig. 2. Theoretical criteria for chaos and true chaotic regions 

In this paper we focus on the second chaotic region which occurs 

near the second order ultraharmonic resonance of the Small 

Orbit motion, that is close to Y::::O.'i. Sc~nario of transition 

to/from chaos observed in the region is more complex and involves 

an interaction of the Small and Large Orbi ts [3 J. From Fig. 3 we 

learn that Small Orbit loses stability first and bifurcates into 

symmetric T-periodic Large Orbit. Next, on further decrease of 

Y , symmetric Large Orbit bifurcates into unsymmetric periodic 

solution, which ends with a cascade of period doublings and 

chaotic region. Chaos ends sharply at Vcr~, where the stable 
nonresonant branch of the Small Orbit appears. No hysteresis 

phenonenon was observe~ when the experiment was carried out at 

increasing frequency parameter V . Here we construct the 

approximate criterion for chaos by considering symmetry breaking 

instability of Large Orbit and crisis type instability of 5.0. 
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Fig. 3. Scenario of transition to/from chaos in the ultrahar
monic resonance region. 

We begin with the T-periodic symmetric solution for L.O. by 

transforming eq. (15) into the form: 

x +- i(/(A,) X +-; (hx rCi,X t-O{:, X3 - c.f(lIt ) X - 'Peos VI)=()i (20) 

where L I - 1 - 1- ~//I) 1 3 ,2 J1'fl = n j JW{f =-2 i /o{j =.2 i CV en! =-71-7//' ;> 0 ; 

and assume: 
y I!:: 0.5': 

/ 
Now the perturbation technique allows us to obtain the refined 

first approximate solution as 

xoN)= A1 cos()}ft-Y) 7- A,3cos(3Vf+.3Yl} i 
P (21) 

Next we examine the symmetry breaking instability by considering 

eq. (7) and the first approximate solution in the series (12): 

bx(f:) = bo of- bPI Cos 2V! + b22 6in2JJ{ ; 
e=O 

(22) 

This reduces eq. (13) into: Vs: + 213 Vs; ..,.c = 0 i 
(23) 
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To find the crisis type instability limit Yc we have to consider 

Small Orbit T-periodic solution in the regiO~ V; O.Jj 
Following the classic theory of secondary resonances we put: 

z = Ccos vi + Z1 
p 

C = y:Z 1-
(24) 

and apply a perturbation technique to eq. (16) to find the new 

variable 21 , with the result: 

and 

z1o{f)== o.{)(a) + a2cos(2J}ft~) + Q3(a2)COspPf i-~+ 

Ci4 (a,2) COS (4 )Jt i- 2!;J) 

F2 {a2 } V) ?~==;(J~{ ; 

(25) 

(26) 

Finally the desired point of the vertical tangent on the reso-

nance curve 

"dF,z 
d Q.2 

is defined by the relation: 

o 
The theoretical criterion for chaos VSJ and 

(27) 

given by eqs.(21, 23) and (26, 27) are shown in Fig. 2b along 

with true chaotic regions obtained by computer simulations [3,5J. 
It is worth noticin~ that the classic Melnikov criterion gives 

Pcr ~ 0.05, which is below the area of Fig. 2b. 
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SUMMARY 
This paper explores the engineering relevance of the homoclinic tangling, and 
associated fractal basins, that are a feature of damped oscillators driven out of a 
potential well by periodic excitation. For optimal escape under forcing at just below 
the linear natural frequency, the homoclinic tangency is shown to precipitate a sharp 
erosion of the safe phase-space basin. This offers a new safety criterion, based on 
transient motions, that might be extremely valuable in ship capsize. Fractal boundaries 
in control space arise when an ambient system is suddenly subjected to a pulse of 
excitation, and their relevance to earthquake studies is briefly discussed. 

INTRODUcnON 

Much theoretical interest has focused on fractal basin boundaries in phase space, 

created at homoclinic tangencies, and we explore here the engineering relevance of a 

dramatic erosion of the safe basin triggered by such a tangency. Associated fractal 

boundaries in control space are also examined. The results derive from recent 

computer studies of an archetypal single-well Duffing oscillator. 

THE DRIVEN OSCll.LATOR AND ITS STEADY STATES 

We consider in this paper the escape from a cubic potential well under sinusoidal 

forcing, an archetypal problem with a clearly defined failure associated with escape to 

infinity over the potential barrier. The specific equation is 

x + pi + x - x2 - F sin(wt) 

and we write x=y. ~=wt (mod 27r). We hold p .. O.] throughout, leaving the two 

controls, F and w. The detailed response of this oscillator is given in [1]. 

Due to the nonlinear softening character of the restoring force, the optimal 

escape from the well, at minimum F. occurs close to w"O.85. and for this reason we 

shall concentrate on this frequency. This w is in fact just above the optimal frequency, 

and the sequence of stable steady states that would be encountered as F is slowly 

increased from zero is: (a) a growing harmonic oscillation at the period of the 

forcing (n-l). originating from the stable equilibrium state at F=x=y=O; (b) a large 

amplitude n=] oscillation generated by a jump to resonance, associated with the usual 

w. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 



www.manaraa.com

314 

nonlinear hysteresis of a softening Duffing oscillator; (c) subharmonics of order 11=2. 

4. B. 16 .... 00 in a period-doubling Feigenbaum cascade leading to; (d) a chaotic 

attractor on a MObius strip, which experiences a final blue sky instability at a 

boundary crisis when it collides with a directly unstable 11=6 subharmonic solution 

at FE =0.109. After this crisis there are no available stable states in the well, and all 

trajectories tend to the attractor at illfillity. Relative F values can be seen in Fig 4. 

SMOOTII AND FRACTAL PHASE-SPACE BASINS 

From an engineering point of view,' the basins of attraction, in the space of the 

starting conditions x(tO)' y(tO)' are likely to be just as important as the steady state 

attractors. We have therefore explored the metamorphoses of these basins [2,3], and a 

typical sequence under increasing F is shown in Fig I: these correspond to the driving 

phase 4>=IBO· so that to=7r/w. Here w=0.B5 and -O.B<x<I.2. -0.9<y<0.B. 

Fig 1. Development of the fractal phase-space boundary 

Each diagram is based on the computed stable manifold or illset of the hill-top saddle 

cycle (emerging from the unstable equilibrium at F .. O. x=l ), whose outgoing 

eigenvector can be seen on the right of each picture. The inset was located by 

automated procedures developed at University College by Alexander [4]: in these, time 

is run backwards on the computer from a constantly refined ladder of starts along the 

incoming eigenvector of the saddle cycle. 
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The black regions represent starting points that are captured by steady states within 

the well. These attractors, identified in the diagrams by their Poincare mapping 

points, are here an n=i oscillation in the first three diagrams, and either an n=i or a 

competing n=3 in the last diagram. The white regions represent starting points that 

escape over the hill- top and tend to the attractor at infinity. 

Over the F interval represented by these diagrams, we see a sharp reduction in the 

basin, triggered by a homoclinic tangency at F .. O.0633 where the boundary changes 

from smooth to fractal. This tangency of the inset and outset of the hilltop saddle 

cycle, generating a homoclinic tangle, was predicted accurately by a Melnikov analysis 

[5]. More important than the onset of a fractal boundary is the fact that the whole 

basin is very rapidly eroded by thick fingers sweeping across the bulk of the 

catchment domain, and it is this feature that we shall now examine and quantify. 

INTEGRITY MEASURES QUANTIFYING BASIN EROSION 

Some proposed measures for quantifying the safe basin are summarised in Fig 2 . 

.Ar is the set of all starts that reach x-xm in I<r 

.99r is the set of all starts that reach x-xm in t-r 

W. is the set of all starts that reach x-xm in I>r (or not at all) 

Finite f gives TRANSIENT BASINS, infinite r gives ABSOLUTE BASINS 

Poincar. 
Section: 

GWBAL INTEGRITY MEASURE (Independent of A) 

Gr - Proportion of the window area represented by ~ 

LOCAL INTEGRITY MEASURE 

Lr - Minimum distance from an attractor A to the boundarl%'r 

IMPULSIVE INTEGRITY MEASURE 

Ir - Minimum distance from A to the boundary in the direction of :ty 

STOCHASTIC INTEGRITY MEASURE (Reliability) 

Sf - Proportion of trials not reaching xm in I<r after A is excited by noise 

Fig 2. Integrity 71U!asures quantifying basin erosion 
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Here we have focused attention both on the absolute basins associated with the 

infinite time behaviour, and on the transient basins associated with a time T which are 

of equal interest to the engineer. The value of xm is an arbitrary measure of escape, 

here taken as 20: a computer usually overflows shortly after this is exceeded. 

Using numerical integrations from a grid of starts in (x,y) space, it is a simple 

matter to evaluate the first three measures relating to the area, distance to the 

boundary, and this distance restricted to the ±y directions modelling an impulsive 

change in velocity. A fourth useful measure is based on superimposed noise excitation: 

here reliability defined in terms of the proportion of runs that survive for 

time T under a given noise intensity seems to be the most useful quantification. 

Integrity diagrams using these measures will be published in a future paper. 

LOSS OF GLOBAL INTEGRITY UNDER INCREASING EXCITATION 

The most relevant measure will depend on the operating conditions of a system, and 

we shall see that for vessel capsize it is the global illtegrity measure that should be 

preferred. This measure has the advantage of requiring no knowledge of the attractors, 

there often being a large number of, possibly unknown, competing attractors. 

The global integrity for w=O.85 is shown in Fig 3, together with estimates of the 

fractal dimension of the boundary. These estimates are relatively crude, based on the 

grid of starts data [61, but confirm that the dimension changes from I (smooth) to 

between I and 2 (fractal) as F increases through the Melnikov value of ~. 

t Gm G] ...--.--.-.. • • 
• • • • 

--6 • • 

0.4 

w .. O.85 

0.1 F 

Fractal 
dimension d • • 

• 
! 
I 

1.0 • i~ • • • • • • I 
I i I 

:rM j 
! 

0.1 
! 
! F 

Fig J. Correlation of global integrity with fractal dimension 
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In the upper integrity diagram Gm is the proportion of the grid of starts that do not 

escape within m forcing cycles. for m=J. 2. 4. 8. and J 6. The curve for G J 6 can be 

taken as a good estimate of Goo . Shortly after FM there is a dramatic drop 

in G J 6 together with a significant splitting of the curves due to chaotic transients. 

The Goo curve is more accurately located in Fig 4. based on computer studies 

for 60 or more forcing cycles [3]. Here both scales are normalized. and it can be seen 

that a very significant loss of area occurs at about 70% of the crisis forcing 

magnitude. It may be interesting to explore why the sharp cliff of the integrity 

diagram occurs at some appreciable distance beyond the homoclinic tangency. 

Area or SAFE BASIN 

1------ SMOOTH lIOUNDAR Y 

r Homoclinic IlnlUCY fE 

-----•• _ FRACTAl. BOUNDARY -f 
I- RESONANT -l -, I 

IIYSTERESIS 

fINAL 

0.1 D.l 0.) 0,4 0,' 0.6 0.7 0.' 0 .' 1.0 r. FIFE 

Normllised FORCING MAGNITUDE. r • FIFE 

Fig 4. High resolUlion study of global integrity [1) 

The sudden final loss of area at ~ is akin to the sudden loss of absolute basin known 

to occur at a saddle-node bifurcation: such a discontinuity will not occur in any of 

the transient basins. as can be seen in Fig 3. 

FRACfAL ESCAPE BOUNDARY IN CONTROL SPACE 

The value of r~0.0725 where Figs 3 & 4 exhibit their well-defined cliff may be a 

useful global safety limit in a number of practical situations. its variation with w 
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giving a global safety boundary, r(w). in control space. The accurate determination 

of this safety locus would involve massive computational or experimental effort. To 

overcome this, it is tempting to make use of the fairly complete central erosion, and 

make trial runs just from the central ambient resting state x(tO)=y(tO)=O. 

It is thus of interest to compute the transient time map in the (F. w) control space, 

starting always at x=y=O. This can be viewed as an alternative cross-section through 

the four-dimensional escape basins residing in the (x(tO)' y(to)' F. w) space: and since 

the phase-space cross-sections are fractal, it follows that the control-space 

cross-section will likewise be fractal. The computed diagram based on a 100 by 

100 grid of (F. w) starts, is shown in Fig 5, and the fractal dimension of the absolute 

boundary has been estimated [6J as d-l.J8. On this figure, black denotes no escape 

within 32 forcing cycles, grey (dots) denotes escape in between 4 and 32 cycles, while 

white denotes escape in less than 4 cycles; curve A is a bifurcation locus of 

saddle-node folds, C is a locus of period-doubling flips (from n=l to n-] ), and M is 

the Melnikov estimate of homoclinic tangency [1]. 

'. CI 
I 

.. ~~~~ 

Fig 5. Frtll:tol boundary in control spoa 

I 

I 
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TRANSIENT CAPSIZE DIAGRAMS: A NEW APPROACH TO SHIP STABll.ITY 

Our escape equation corresponds to an archetypal worst-case capsize scenario of a 

biased boat in regular beam seas. The co-existing harmonic, subharmonic and chaotic 

attractors undergoing intricate bifurcations, are clearly too complex for routine design 

work. They are also largely irrelevant, because a boat is unlikely to be in a 

well-defined steady state, implying that greater attention should be given to the basin 

of attraction. Our work shows that there is likely to be a sudden and well-defined 

erosion of the safe basin following a homoclinic tangency, and safety limits should be 

based on this, rather than on the final instability of a metastable attractor. Liapunov 

and Melnikov analyses are of limited practical value, so the naval architect most try to 

assess the safe (F. w) domain using computer simulations or model tests. 

In computations and experiments such transient studies have the advantage of 

being not only more relevQJlt. but actually easier to perform: and considerable savings 

in time can be made from an inspection of Fig 3 which shows that if a boat does not 

capsize in 16 forcing cycles, then it is unlikely to capsize at all, since G 16~Goo' 

The erosion of the central region of the safe phase-space basin means that just a 

single transient study from the ambient resting equilibrium state might be sufficient to 

give a good indication of the safe control space domain. So in naval architecture our 

Fig 5 might be a very useful transient capsize diagram [7) showing the allowable 

sea-states of a boat in terms of the wave magnitude F and the wave frequency w. 

DESIGN AGAINST EARTHQUAKE DAMAGE 

An earthquake can often be idealized as just the pulse of periodic loading envisaged 

here, exciting a structure in its resting state. The Mexican earthquake was remarkably 

sinusoidal: and even in a less regular event, the excitation reaching a component will 

be predominantly sinusoidal at the frequency of the main structure. Our fractal 

control-space diagram is thus relevant to earthquake engineering, especially as our 

metastable cubic potential would be exhibited by any component with an explosive, 

shell-like post-buckling characteristic. 

CONCLUDING REMARKS 

Fractals in phase space have attracted much theoretical attention in recent years 

[8-10), but their engineering role is largely unexplored: our study suggests that they 

have important consequences for the integrity of practical systems in noisy 

environments. Fractals in control space have been investigated for iterated maps, but 

their occurrence in driven oscillators may be important in a variety of engineering 

applications [6). 

As we have emphasised in our recent book [11), the new and complex phenomena 

emerging from dynamical systems theory demand that much more effort be expended 
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to explore the full response of dynamical models of engineering systems. The 

derivation of the model, which has often been seen as the main task, may in some 

cases be a relatively trivial part of the whole exercise. 
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Abstract 
The method of Interpolated Mapping has been demonstrated over the past few years 
to be a highly advantageous method with which to explore global nonlinear behavior. 
Such global questions include the determination of the basins of attraction of a system's 
attractors and fractal dimension calculations for these regions. Such global analyses have 
focused, by definition, on answering questions regarding system behavior throughout 
large regions in state space. In addition to analyses of this sort, it is often desirable to 
consider the response of a given system for small perturbations about a given trajectory. 
This aspect of the Interpolated Mapping method, that allows a determination of local 
stability characteristics, has yet to be fully exploited. The present work will present a 
review of the Interpolated Mapping method and then examine the specific problem of 
identifying a system's Lyapunov exponents in order to illustrate the method's use in 
such a transient analysis. 

Introduction To Interpolated Mapping 

Interpolated Mapping [4-9] serves as a means to determine the phase flow of a dynam

ical system for any given initial condition without the necessity of direct numerical 

integration. Figure 1 shows a schematic representation of a typical segment of phase 

flow that illustrates the technique. As drawn, a set of trajectories corresponding to nine 

initial conditions are seen to move through the three dimensional phase space made 

up of Xl' X2 , and t. This could correspond to the evolution in time of a second or

der differential equation under the action of a time varying forcing, for instance. It is 

clear that for the time interval shown, the relative orientations of the nine points has 

changed. Whereas originally they were organized in a rectangular array, they are now 

displaced from this orientation. However they still retain the essential shape of the 

original configuration. The four boxes defined by the original array still exist and are 

still convex. The set of trajectories resemble nothing so much as streamlines in a fluid 

flow. Adopting this viewpoint, it seems reasonable to say that the position of an initial 

condition originating in one of the boxes will still be within the image of this box after 

a given time !:l. T has elapsed. 

w. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 



www.manaraa.com

322 

In Interpolated Mapping, a mapping is constructed of just such a set of initial conditions 

and the numerically determined terminal conditions corresponding to the individual ini

tial conditions are recorded. This information is then used in an interpolation procedure 

that allows a complete trajectory to be computed for any given initial condition that 

lies within the confines of the original array. Since there is no overt discretization of 

phase space, the method allows an infinite number of unique trajectories to be found. 

For Poincare analyses the duration of the integration will typically be equal to one 

period of the forcing function. In an autonomous set of equations, the duration is up 

to the analyst to determine. For Poincare maps, a given trajectory can map off of the 

array in the space of a single mapping due to the finite dimensions of the initial array. 

For convenience, such points are considered to have no attractor within the array, even 

though they might eventually return. 

The only firm information regarding the system phase flow are initial and final conditions 

of the original mapping array. A bi-linear interpolation is utilized to determine the 

terminal behavior of any points that lie within the original array. This procedure is 

illustrated in Figure 2. The final position of initial condition A is the point B, found 

by interpolating between the target positions (D1 , D2 , Da, D4 ) of the four surrounding 

points (C1 , C2 , Ca , C4 ). 

One can easily extend the trajectory in time by repeatedly applying the map and using 

further interpolation. It is important to note at this point that the individual segments 

of a given total trajectory are unique to that particular trajectory. Therefore, even 

though a finite number of initial conditions were used, an infinite number of trajectories 

can be generated. This method of Interpolated Mapping is called Bi-Linear Interpolated 

Cell Mapping (BLICM). 

Although this technique does quite well at simulating the dynamics of a given nonlinear 

system [4,5,7], it has some inherent limitations. One of these difficulties is that it 

can introduce qualitative distortions in the system's basins of attraction. The reason 

for these distortions is that the technique relies on the fact that a bi-linear mapping 

procedure is used to carry the dynamics of the nonlinear system under consideration 

from an initial time to some future time. This induces slope discontinuities in the phase 

flow. To address this issue, the Tensor Product Interpolated Cell Map (TPICM) [6] 

was developed. This method allows a very accurate and smooth approximation to the 

system phase flow but at the penalty of additional needed computation. 
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As described above, the Interpolated Mapping methodology clearly considers the be

havior of large chunks of phase space. Although necessary for global analyses, such 

an approach will prove to be computationally inefficient if one is merely interested in 

local properties. For this case, one must concentrated upon regions of phase space that 

are close to some nominal trajectory. Lyapunovexponents [I], which measure the ex

ponential rates of divergence or convergence associated with an attractor of a system, 

represent just such a local property. Periodic attractors are characterized by having 

only non-positive exponents while chaotic systems will exhibit at least one positive ex

ponent. A calculation of these exponents gives a quantitative measure of the rate at 

which one loses the ability to predict the system response and can be used to calculate 

an approximate value of the fractal dimension of the attractor. 

Because the individual Lyapunov exponent calculations can vary widely over short time 

intervals, the exponents are defined as a long time average over the entire attractor. 

This forces long computer simulations that serve only to give the exponents for a given 

set of parameters with a particular group of initial conditions. In this paper, the central 

concept of Interpolated Mapping will be extended to allow a highly efficient calculation 

of a system's Lyapunov exponents [11]. 

The system to be examined will be a second order Duffing's equation. The extended 

method utilizes a modification of the Interpolated Mapping technique to ensure that the 

only computations undertaken are those that directly affect the Lyapunov calculation. 

Predicting Lyapunov Exponents 

Because the action of nonlinear differential equations on state space can induce a strong 

stretching and folding action, the values of locally determined Lyapunov exponents will 

vary a great deal. In spite of this, the locally determined values can still yield useful 

information. Since the Lyapunov exponents describe the locally linearized behavior of 

a system, one can easily show [11] that for a second order system, their sum will be 

equal to the negative of the linear viscous damping coefficient. One can obviously use 

this fact as a means of verifying the accuracy of the numerical integration routines. 

This system characteristic will be illustrated through a numerical calculation of the 

Lyapunov exponents for the following Duffing's equation: 
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!i + .1% - x + X3 = 3.2cos(.475t) (7) 

To obtain the system's Lyapunov exponents, a point that lies on the steady state at

tractor of the system of interest is selected. Obviously this implies that the simulation 

has run long enough to have obtained steady state conditions. A vector of magnitude 

£ and arbitrary direction is placed with its base at the point on the trajectory. It is 

important that £ be small so that only localized deformations of phsase space are con

sidered. A second vector, perpendicular to the first and of equal magnitude, is then 

added. In general, additional vectors would be added in a similar fashion until one has 

an orthonormal basis for the space in the region of the test point. The test point and 

the vector set are next integrated forward in time for A seconds. The largest local 

exponent, ~1 is found from: 

1 I, 
~1 = -In(-) 

At £ 
(8) 

where I, is the length of the largest vector after integration. This vector will quickly 

orient itself in the direction of maximum divergence. The second vector, however, is 

not free to tend toward the second greatest direction of divergence because of the effect 

of the largest exponent upon its direction. Thus, the second exponent is calculated 

through the calculation of the sum of the first two exponents, which measures the rate 

of contraction of a two dimensional trapezoid in state space. This is governed by a 

similar equation: 

(9) 

where A, is the final area of the space covered by the first two vectors. Subsequent 

exponent sums would be computed in a similar fashion for higher dimensional systems. 

The largest vector is then renormalized to a magnitude of £, keeping its direction the 

same, so that it can continue to converge in the direction of the largest exponent. 

The remaining vectors are again constructed perpendicular to the first. This process 

is repeated over a long time interval and the exponents are calculated as a long time 

average over the steady state motion. This long time average is extremely important, as 

even very close trajectories leading to periodic orbits can diverge from each other over 
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short time intervals. Indeed, this phenomenon is what characterizes transient chaos. 

Physically, the trajectory has to be extended enough to ensure that it visits all the 

regions of the attractor sufficiently often to accurately reflect the relative degree of 

visitation that would occur under an infinitely long simulation. It should be noted that 

this method is similar to that used by Wolf et.al. [111. 

The preceding remarks are illustrated in Figure 3, in which the local local behavior of 

.\.1 and .\.2 for the system given by Equation 7 is plotted as a function of time. For this 

graph, H.\.l + .\.2) = -.0500. Figure 5 shows the cumulative averages of .\.1 and .\.2' 

Note that, as expected, the sum is not changed by averaging. The analytical method 

derived here would indicate that H.\.l +.\.2) = -.05, just as expected from the analytical 

prediction. 

Generating Lyapunov Exponents From Interpolated Trajectories 

A Lyapunov exponent calculation of a full time series requires a knowledge of the system 

behavior at all phases of the forcing function, not just at the periodic intervals defined by 

a Poincare map. To accomplish this, it is necessary to record the position of each point 

in the initial condition array, relative to its previous location, at each numerical time 

step, so that each position can be used to interpolate to the next. Unfortunately, doing 

this for a large portion of phase space would eliminate any computational efficiency that 

the basic method displays. 

In order to obtain the quantity of transient information necessary to determine the 

Lyapunov exponents, while preserving the computational advantage of Interpolated 

Mapping, the following technique is used. An initial condition array is set up, but none 

of the points are numerically integrated yet. A test point in phase space is selected and 

numerically integrated until it has converged onto an attractor. Once on an attractor, it 

is surrounded by four other points, all lying on the initial condition array. Each of these 

four points are numerically integrated for just one time step in the numerical integration 

routine, and their final positions are recorded. The test point is then interpolated to its 

next location and the process is repeated. Each time the point advances a step forward, 

a test is made to see if the point is surrounded by any existing array points. If it is, 

then the point is interpolated to its next position and the process continues. Otherwise, 

another group of surrounding points is created in the manner described above before 

continuing. The procedure used in finding the exponents by this technique is identical 
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to the general method except that at each timestep the vectors are interpolated, rather 

than integrated, to their next positions at some point At in the future. In this way, 

the minimum covering set of array points is utilized that encloses the attractor. This 

version of Interpolated Mapping will be termed a Sequentially Generated Map. 

Because of the transient information recorded, the array can be used to recreate an 

entire trajectory for the system. Table 1 displays the results of using this approach as 

well as direct numerical integration. Equation 12 was used in the calculations, with 

the forcing frequency chosen to equal 0.482, 0.4776, 0.476, and 0.475 to allow different 

period respon~es to be studied. 

The results show that the exponents found using the Sequentially Generated Mapping 

are very close to the exponents calculated through exact numerical integration. The 

practicality of the method is further illustrated by a comparison of CPU times required 

to complete, the calculations. Table 2 displays the CPU time required by a CYBER 

855 computer to perform the calculations illustrated above. In each case, 200 forcing 

periods at 80 time steps per period were used to eliminate the transient behavior. The 

calculations were then based upon 5000 additional forcing periods. 

One can see from Table 2 that the Sequentially Generated Mapping is much less com

putationally intensive than numerical integration for the periodic cases. Even for the 

chaotic case, the technique took only about half as long as the direct integration method. 

Because all of the necessary grid points have been generated by the time 5000 forcing 

periods have been followed, the savings in computation would of course increase if longer 

times are examined. 

Conclusions 

Interpolated Mapping has been shown in a number of previous papers to be a very effi

cient tool with which to find the global responses of nonlinear systems. In the present 

paper, a generalization of the method was used to consider the analysis of transient sys

tem behavior. Using the Sequentially Generated Mapping procedure, results that were 

extremely close to those found from numerical integrations were generated at reduced 

computational costs, thus indicating that the Interpolated Mapping methodology can 

be profitably extended to the problem of transient analyses. 

This work was supported by the National Science Foundation, Grant No. MSM-8451186 

with Dr. Elbert Marsh serving as contract monitor. 
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Response Numerically Sequentially 
Type Integrated Generated 

Mapping 

Period 1 -.00860 -.00865 
-.09139 -.09135 

Period 2 -.04995 -.04996 
-.05004 -.05004 

Period 4 -.03218 -.03281 
-.06180 -.06713 

Chaos .01155 .01713 
-.11154 -.11713 

Calculated Lyapunov Exponents 

Table 1 

Response Numerically Sequentially 
Type Integrated Generated 

Mapping 

Period 1 486.1 15.1 

Period 2 481.2 11.0 

Period 4 486.2 11.6 

Chaos 486.9 283.0 

Comparison of CPU Requirements 

Table 2 
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Summary 
We describe examples of two phenomena: the decay of a nonlinear coherent state 
under the influence of friction and the resonance of such a state due to a time 
periodic external forcing. In the latter case a period doubling transition to chaotic 
motion can be found as function of a parameter in the forcing. Essential is that in 
each case the state remains spatially coherent. The main features of these 
phenomena can be described with only two observables: say the amplitude and 
the phase of the coherent state. Here one method is given to choose these 
observables properly and to formulate their equations of motion in each case. 

Decaying and resonant states 
In this paper we consider systems with equations of motion 

w = Fo(w) + Fe(w,t) - D(w). (1 ) 

Here w is an element of the state space whose dimension may be finite or infinite. 
Fo(w) is a Hamiltonian autonomous term, Fe(w,t) is a time periodic external 
forcing and D(w) represents dissipation. The specific form of these terms will be 
specified later. 
As examples for the autonomous Hamiltonian part one may think of a spherical 
pendulum, a chain of N particles on a ring with nonlinear interaction between 
nearest neighbours ( such as the well-known Toda chain with periodic boundary 
conditions), or a continous system such as the Korteweg-de Vries equation, which 
describes one way running waves in many different physical systems. In the latter 
case the unperturbed part of (1) reads (subscripts denote partial differentiation) 

Ut = ax ( u - 3 u2 - uxx ) (2) 

which is Hamiltonian indeed with Hamiltonian J dx(u2 12 + ux2 12 - u3), and ax is 
the appropriate anti-symmetric operator. 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer·Verlag Berlin Heidelberg 1990 
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In all three examples given the autonomous part has special time periodic 
solutions with common properties, both in appearance and in their analytical 
'background' as we will see: we mean the mode rotating with fixed angle to the 
vertical axis of the pendulum, a travelling 'one hump' density wave running 
around in ring of particles (cf. [1] for the integrable Toda chain and [2] for 
nonintegrable chains) and a travelling 'cnoidal' wave in the KdV case [3]. 

We describe the behaviour of such nonlinear excitations under influence of the 
extra terms Fe and 0 in (1) in two different cases. First consider the case of only 
dissipation: Fe is zero, and take the pendulum with uniform viscous friction as an 
example. If w = [p,q], p and q denoting momenta and coordinates respectively, the 
dissipation is given by 

O(w) = A [p,O]. (3) 

Choose as initial condition an exact rotating mode. Then obviously the motion 

decays and goes to equilibrium. Especially, for the friction coefficient A below a 
certain treshold we observe numerically that the trajectory remains nearly circular: 
i.e. at each instant it is near a rotating mode, with slowly decaying amplitude and 

angular momentum. In fact, if L denotes the angular momentum and e(L) the angle 
with the vertical axis of the rotating mode for a given L, the damped motion is 

described by L(t) = Lo exp(-At) and e '" e (L(t)) .This may not be very surprising, but 
a similar phenomenon is found in the Toda chain and in KdV [4,5]: In the former 
case, again with friction as in (3) and starting with an initial condition of an exact 
localized wave solution of the autonomous system, the wave decays but remains 

localized at each instant: if rn(t) = r (a; 21tn/N - ro(a)t) describes the coordinate of 

the nth particle of the density wave of the autonomous system (with 'amplitude 

parameter' a, particle number N, circular frequency ro ), the decaying wave is 
approximately given by the same expression but with the parameter a decreasing 
as a function of time. In the KdV case the same behaviour is observed for two 
different types of damping, i.e. if eq. (2) is extended with uniform damping and with 
a term due to viscosity, given by respectively 

(4) 

Next consider a case in which all three terms in (1) are present. In a particle chain 
(actually with a nonintegrable interaction potential and with two fixed ends instead 
of an arrangement on a ring) with friction as above it appeared to be possible to 
choose a time periodic forcing Fe(w,t ) in such a way that there is an attracting 
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periodic state which shows a density wave bouncing back and forth beween the 
two fixed ends [6,7]. Increasing a strength parameter in the forcing a period 
doubling transition to chaotic motion appeared, whereas the 'one hump' character 
of the solution was conserved. This means that it remained a strongly localized 
wave going to and fro between the walls. Thus the spatial coherence was 
maintained and the chaotic behaviour was observed e.g. in the time intervals 
between the collisions of the wave with the wall. Note the similarity with a ball 
moving back and forth between two reflecting walls, the so called Fermi problem, 
[8] and with a ball dancing on a periodically vertically oscillating table [9]. 
Transitions to chaos via a period doubling sequence based on a coherent 
structure of the unperturbed system were observed in continuous systems as well, 
e.g.in the Nonlinear Schrodinger [10] and in the Sine-Gordon equation [11]. 

All these phenomena have in common that there seem to be only a few relevant 
observab/es. The aim of this paper is to describe briefly one way to describe 
these seemingly different behaviours and to derive equations of motion for the few 
dominant observables. 

Analytical descrjption 
Fundamental for this description is that in all cases mentioned, the autonomous 
system has a family of periodic solutions depending on some parameter. In the 
integrable cases such families come about in the same way. Consider the 
pendulum. One readily verifies that the rotating mode represents at each time a 
minimum of the energy for given angular momentum, which is a constant of the 

motion because of rotational symmetry. Similarly, for KdV the integral Jdx u2 is a 
constant of the motion related to translational symmetry of the system. It is called 
the wave action. The variational problem: minimize the energy for constant wave 
action yields the cnoidal solution [12]. In the case of the Toda chain the second 
constant of the motion is not known explicitly. However, defining the actions as in 
[1] a one hump wave going around in the chain represents a solution minimizing 
the energy for a given appropriate action. The period doubling transition 
discussed above was observed in a nonintegrable chain. Then no second 
constant of the motion is available. Nevertheless a family of bouncing waves is 
expected to exist. Using a variational formulation a family of solitary wave 
solutions can be proven to exist for particles on a ring [2]. 

In the integrable cases the minimization problem yields the value of the second 
constant of the motion, call it a, as a function of the energy, or vice versa. So 
naturally one can parametrize the solution with a. Then also the frequency of the 
motion depends on a and a solution of the autonomous system is given by 

w(t) = v(a, cp) with a = 80 and cp = m(8o) t + CPo, (5) 
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ao and $0 being determined by the initial conditions, and v(a, $) a 27t periodic 

function of $. 

Essential for the present analysis is that such a family spans a twodimensional 
surface in the phase space of the given system 

V =def {w I w = v(a, $), 0 S $ < 27t and a in some range }. (6) 

This surface is composed of periodic orbits (5) of the unperturbed part of the 
equation for various values of ao. Thus V is an invariant surface for this part. One 

can show [7] that Ho(v(a, $) ) does not depend on $ and that for a proper scaling 

dHo Ida = co(a). Thus one can say that the restriction of the unperturbed part to V 

is a one degree of freedom integrable oscillator with [a, $] as action angle 
variables. 

The experiments described above lead to the observation that in these cases the 
actual orbit of the full system remains near the two-dimensional surface V. This 
means that one can write 

w(t) = v(a(t), <II(t» + z(t) (7) 

with z small. Obviously any solution can be written like (7) but even for a solution 

near V, z is small only if a and $ have the right dependence on time. We now 
describe briefly how this can be achieved. 

Let T (a,$) denote the (two-dimensional) tangent space to V at the point v(a,$) of V. 

Let Y (a,$) be its complement in the phase space such that 

o -Id 
(y, J x) = 0 for y e Y, x e T and with J = (8) 

Id 0 

For a continuos system as KdV, J must be taken as -ax -1. Now we require 

( z(t), J x (a(t), <II(t» == 0 (9) 

Le. z e Y for all time. This requirement serves two purposes: it makes the splitting 

w = v(a,<II) + z unique, and it decouples the dynamics of a and <II on the one hand 
and of z on the other in some optimal way 

To obtain equations of motion for [a,<II] and z substitute (7) in the equation of 
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motion (1) and split it in two parts by projecting on T and Y respectively. Using va 
and v<l> (subscripts denote partial differentiation) as the obvious basis for the 

tangent space T we obtain with (9) , omitting the O(z2) terms 

a va + (~- oo(a» v<l> [ Fe(v,t) - O(v)]T + (*) 

[{dFe(v,t) - dO(v)} z] , (10a) 
T 

[i - (dFo(v) + dFe(v,t) - dO(v) ) z] Y = [Fe(v,t) - O(v)] Y. (10b) 

Before we draw conclusions, consider these coupled equations in more detail. 
The first line of (10a) ( referred to as (*) ) represents a one degree of freedom 

driven and damped oscillator with action angle variables a and <1>. In fact it is 
precisely the restriction of the system to V (cf [5,6,71 for more details). The second 
equation (10b) is an inhomogeneous linear equation for z, the inhomogeneous 
term being the V-component of the external forcing and the dissipation at the 
surface V. They are coupled in two ways: both sides of (10b) depend, through v, 

on a and <1>, and there is the term linear in z in (10a). 

Now we claim that the one degree of freedom (1 dof) oscillator (*) describes the 
dominant features of the decaying and resonating modes. This is supported by 
more detailed analysis of experimental data for Toda [4] and KdV [5]. The possible 
validity of this claim is also supported by the next paragraph. 
One interesting question to answer is under what conditions the full system has a 
trajectory that remains near V and whose dominant features are given by (*). Two 
conditions seem to be sufficient: i) The zero solution of the homogeneous part of 
(10b), in which the solution of (*) is substituted, is attracting, and ii) The transversal 
component of the combined effect of forcing and damping (rhs of (10b» is much 
smaller than its tangential component (rhs of (*». i) causes that z is of the order of 
this transversal component so that ii) justifies that the linear term in z of the second 
line of (10a) can be neglected. One consequence is that carefully adjusting the 
driving term, as in [6], may cause behaviour described by (*). Indeed similar work 
on the Toda chain, but with a straight sinusoidal term [13], leads to different 
behaviour. 

Comments 
In conclusion, we claim that (10) and in particular (*) gives a useful description of 
the discussed phenomena, but obviously a detailed rigorous analysis, including 
the effect of the higher order terms, is necessary. Some final remarks are in order. 
Obviously the 1 dof oscillator (*) can show time chaotic behaviour, depending on 
the chosen driving. In that case one cannot immediately conclude that the full 
system has a chaotic attractor, let alone that it is low-dimensional. Eq.(10a) is only 
an approximate description of the projection of the trajectory on V. The same 
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holds true if a complete period doubling sequence exists in (10a): One cannot 
simply conclude that the full system has a pd-sequence too [14]. 
The above described procedure is one way to introduce 'collective coordinates', 
that is coordinates which describe the 'bulk features' of the observed motion. Often 
special solutions are substituted in the equations of motion or in the Lagrangian of 
the system [3] and assuming several properties of the motion (e.g. slowly varying 
variables etc. ) one ends up with a set ODE's like here. Sometimes the derivation 
is purely based on the phenomenology. An interesting example is given in [15]. 
Our method seems to make optimal use of the Hamiltonian structure of the 
unperturbed system, via the projection (9) and the use of action-angle variables 
on V. It seems worthwile to investigate the relation between the several methods. 
Finally, the present method seems to be extendable to higher dimensional 
dominant behaviour: The solution family of the unperturbed system is then for 
instance a family of two-tori and one can hope to be able to describe and 
understand 2-dof behaviour. Many interesting experiments in this area are done, 
as examples we just mention [16,17], presented at this Conference, and [18]. 
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Abstract 

The paper discusses the transition from deterministic to stochastic dynamic 
systems under external or internal excitations. For this purpose, we apply harmonic 
excitation models with frequency fluctuations by white noise and derive invariant 
measures as stationary solutions of associated Fokker-Planck equations. In case of 
periodic system solutions, the measures degenerate to singular distributions. They 
become regular for increasing frequency fluctuations. In particular, they determine 
Lyapunov exponents of systems with generalized parameter fluctuations. 

1 Generalized excitation models 

In nonlinear dynamics, research is mainly restricted to harmonic excitation models with 
deterministic amplitudes and frequencies. In nature, however, there are always some noise 
sources such that parameters of excitation or system models become uncertain. They 
start to fluctuate around the deterministic mean values and change the system behaviour, 
correspondingly. The most efficient way to take into account parameter fluctuations is 
given by the model of white noise e(t) = W, which can formally be explained as the 
time derivative of the Wiener process Wt. The Wiener process is normed and normally 
distributed with zero mean. It is started with a vanishing initial value and possesses 
the infinitely increasing square mean E(Wn = t. To obtain stationary properties, we 
apply increments dWt of the Wiener process. They are normally distributed, as well, and 
possess the expected values E(dWt ) = 0 and E[(dWt )2) = dt. 

To investigate excitation models with frequency fluctuations we start with the following 
nonlinear process formulation. 

(iJ10 =0). (1) 

Herein, e and We are deterministic amplitudes and frequencies of cosine functions. For 
vanishing noise intensities (0- = 0), the angular process iJ1 t degenerates to <p(t) = wet 
leading to the harmonic excitation function f(t) = e cos wet, usually applied. However, 
for increasing frequency fluctuations (0- > 0), the excitation trajectories become irregular 
with respect to amplitudes and frequencies such that they have to be analysed by means 
of measure theory. Appropriately, we apply the spectral measure which is the power 
spectrum of stationary stochastic processes Ft. Following the analysis, given in [1], the 
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spectrum SAw) ofthe Ft process is derived by means of Ito calculus and finally calculated 

to 
e2q2(W; + w2 + q4/4)/2 

S/(w) = , (w; - w2 + q4/4)2 + W2q4 
(-00 < W < +00). (2) 

In figure I, one finds four typical evaluations of possible frequency distributions (2) in 
dependence upon the spectral frequencies w. 

Spectra - Generalized Excitation Model 
9 9 

5 5 

Z Z 

He- 1 Ep- 1 51- .03 ~e· 121 Ep· 18 51- 10 

-~2 -1 0 1 2 -~2 -1 0 1 2 
9 9 

5 LJ ~ z J\ .J\ 
We- 1 Ep· 1 51- .34 We- 121 Ep· 2 St- 1 

-2 -1 a 1 2 -~Z -1 0 1 Z -2 
Spectral Frequency Spectl"'al Frequency 

Figure 1: Power spectra of the generalized excitation model 

The left side of figure 1 shows a typical band-pass distribution for the data We = I, e = 1 
and q = 0.34. In the limiting case of vanishing noise intensity (q = 0), the power spectrum 
goes over to S I( w) = 5( W ± we) which characterizes the frequency concentrations of the 
harmonic excitation model. On the right-hand side we see a typical low-pass spectrum 
for We = 0, e = 2 and q = 1. If amplitudes e and noise intensities q are simultaneously 
increasing with q = eV2 -t 00, we reach the opposite limiting case of the uniformly 
distributed white noise spectrum S/(w) = 1. In this sense, the stationary process (1) 
covers stochastic excitation models as well as deterministic ones. It allows, therefore, 
to study the transition between both limiting cases, systems driven by white noise and 
harmonically excited systems. 

2 Chaotic motions of low-pass systems 

In the following, we investigate a first application of the generalized fluctuation model. 
Let us consider a linear low-pass filter with the limiting frequency Wg under the external 
excitation defined in (1). 

(3) 

Obviously, the dynamic problem (3) is nonlinear. It consists of two scalar first order 
equations; Zt is the state process of the filter and <P t is the linear angular process. The 
nonlinearity is introduced by the cosine of the angle process. The system equations (3) 
are simulated by means of forward differences with the time step tlt. 

Zn + (-wgZn + (! cos <pn)tlt, 

<Pn + wetlt + qR".;t;:i, 

n = 0,1,2, ... , 

E(R~) = 1. 

(4) 

(5) 
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Herein, Rn is a sequence of independent numbers, normally distributed with zero mean 
and normed square mean. They are produced by means of linear congruence generators 
and Box-Muller transformations [2]. The square root .;zs:; of the time step applied in (5) 
corresponds to the mean square E[(dWt )2] = dt of the stationary Wiener increments. 

Chaotic System - Frequency Fluctuation 
2 2'~------r-----~ 

NG 

Figure 2: Simulations of periodic and chaotic trajectories 

In figure 2, one finds simulation results of the time-discrete systems (4) and (5). They 
show stationary Z .. solutions over the angular process oI!,. in the range -7r ::; rp ::; +7r. The 
applied data are l!!..t = 0.005,e = 20,w. = 10 and Wg = 10. The first picture (NG) shows 
periodic solutions of the filter for vanishing frequency fluctuations (0" = 0). In the next 
ones (NG), the fluctuation intensities are increased to 0" = 0.3 and 0" = 1. In the fourth 
picture, the noise generator (NG) is replaced by harmonic frequency fluctuations (HF) of 
the form 0" cos 7rWet where 0" = 8 is applied. In both cases, we observe a bifurcation of the 
periodic filter solution. With increasing frequency fluctuations, they bifurcate into chaotic 
motions with certain variations around the periodic mean solutions. We call them chaotic 
since all trajectories are simulated in a purely deterministic way. Starting with the same 
initial values they can be reproduced identically. Differences between narrow-band (HF) 
and broad-band (NG) fluctuations of the excitation frequencies are only observable in the 
microstructure of the response trajectories. However, a global description by means of 
measure theory leads certainly to similar distribution densities in both cases. 

We investigate the two-dimensional distribution densities p(z, rp) for the broad-band fre
quency fluctuations, formulated in (3). They are determined by the Fokker-Planck equa
tion, associated to (3). In the stationary case, it has the following form: 

1 2a2 a a 
-0" -a 2P(Z,rp) -We-a p(z,rp) + --a [(wgz - ecosrp)p(z,rp)] = O. 
2 rp rp z 

(6) 

Following the analysis, given in [1], the solution of this diffusion equation can be represen
ted by a Fourier series in the angle domain -7r ::; rp ::; +7r and a Fourier integtral which 
transforms the density variable z to t, both valid in -00 < z, t < +00. 

1 1+00 00 1 k p(z,rp) = -()2 exp(-itz) 2: kl(it) ek(rp)dt, 
27r -00 k=O • 

(7) 
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(8) 

Herein, the coefficient functions ek(tp) are determined by the stationary moments E(Zt), 
E(Zt cos nCPt) and E(Zt sin nCPt) which are easy to calculate from the system equations (3) 
for all k, n = 0,1,2, .... Figure 3 shows a three-dimensional evaluation [3] of the calculated 
density p(z, tp) for the data, already applied in the third picture of figure 2. The density 
is 211"-periodic with respect to the angle variable tp and non-gaussian with respect to z. 
Naturally, this non-normal form is caused by the nonlinearity of the dynamic system (3). 
Integrating p(z, tp) in the angle range -11" :::; tp :::; +11" we obtain the density function p(z) 
of the stationary filter process [1]. In the limiting case IT = e./2 -+ 00, it is normally 
distributed. For IT = 0, it degenerates to the singular, non-normal cosine distribution of 
the harmonic response. 

-3.14 

Z-Acnse pni-ACnse 

Figure 3: Joint density distribution of filter and angle processes 

3 Simulation of Lyapunov exponents 

In a second application of the generalized fluctuation model (1) we investigate dynamic 
systems with time-varying parameters. For this purpose let us consider an oscillator 
equation of the following form: 

" • 2 
X t + 2Dwl X t + WI (1 + e cos cpdxt = o. (9) 

Herein, D > 0 denotes a dimensionless damping measure and WI is the natural frequency 
of the oscillator. The parametric excitation has the amplitude e. The angular process CPt 
is defined in (1). Obviously, X t == 0 is a strong solution of the oscillator. This equilibrium 
solution is asymptotically stable for e = 0 and D > O. It is destabilized with increasing 
amplitudes e > o. We investigate the stability of X t == 0 by means of Lyapunov exponents. 
According to [4], this is performed by introducing the polar coordinates X t = At cos 'l"t 
and Xt = wlAtsin 'l"t which transform the equation (9) into a nonlinear first order system 
for the phase process 'l"t and the natural logarithm of the amplitude process At. 

(log At}" = -wI[2D sin2 'l"t + i cos CPt sin2'l"t], (10) 
• • 2 

'l"t = -wIll + Dsm21J.it + ecosCPtCOS 'l"t]. (11) 
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The phase process 'litis decoupled from the growth behaviour of the amplitude. Moreover, 
'lit is stationary in the angle range -7r :::; 1/J :::; +7r describing the rotation of the state 
processes in the phase plane. The phase process can be simulated by means of forward 
differences. The simulation of the angle process <Pt is already explained in (5). 

Wn+1 = 'lin - wd1 + D sin 2Wn + e: cos<Pn cos2 W,,]At, 

.A=-w1Iim N1 f[2Dsin2 Wn+:'cos<Pnsin2Wn]. 
N ..... oo n=l 2 

(12) 

(13) 

Subsequently, the obtained results are inserted into (13) in order to determine the asso
ciated Lyapunov exponent .A. The time average (13) represents the discrete version of 
Oseledec's multiplicative ergodic theorem [5] . 

• 25 

.20 

.15 

.10 

• OS 

0.30 
1. SO 

EDS 

2.50 

Figure 4: Lyapunov exponents of the Mathieu equation 

In figure 4, we show numerical results [6] of the related Lyapunov exponents .A/W1 over 
the parameter range 0 :::; e: :::; 1.5 and 0.5 :::; We :::; 2.5 for (1' = o. In this special case of 
vanishing frequency fluctuations, the angle process <P t of the parametric excitation goes 
over to the deterministic form <Pt = wet of the Mathieu equation. Further data of the 
applied simulation are D = 0.1, At = 0.001 and N = 100,000. The results of figure 4 
verify the well known Mathieu effects with the parameter resonances near We = 2wdp 
for p = 1,2,3, ... Inside the stability region, the Lyapunov exponents are calculated to 
.A = -DW1. These negative values are increasing with increasing amplitudes. They be
come positive beyond the stability boundaries and reach their maximal values in the 
center of the instability regions. In particular, we observe a sharp separation between a 
completely plane Lyapunov exponent distribution in the stability range and a fast growth 
behaviour of the Lyapunov exponents near the stability boundaries. The sharp separation 
is smoothed out [6] if we admit frequency fluctuations ((1' > 0) ofthe harmonic parameter 
excitation. 

4 Invariant measures of the Mathieu equation 

In the harmonic case ((1' = 0) of parameter excitations, the Fokker-Planck equation asso
ciated to the phase process (11) and to the angle equation, noted in (1), degenerates to a 
Liouville equation. 
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We :rpp(rp,'ifJ) -Wl :'ifJ[(1 + Dsin2'ifJ + ecosrpcos2 'ifJ)p(rp,'ifJ)] = 0, (14) 

f(rp,a) = I: exp(ia'ifJ)p(rp,'ifJ)d'ifJ, -00 < a < +00. (15) 

It determines the stationary joint invariant measure p( rp, 'ifJ) of both processes in the angle 
range -7r :::; rp, 'ifJ :::; +7r. By means of the Fourier integral (15) the phase variable 'ifJ is 
transformed into a. This results in a transformed equation of the following form: 

4we :rpf( rp, a) + iawl {2(2 + e cos rp )f( rp, a) + e cos rp[f(rp, a + 2) + 

+f(rp,a - 2)]- i2D[f(rp, a + 2) - f(rp,a - 2)]} = o. (16) 

The partial differential equation (16) is solved by the exponential function exp[iag( rp )]. 
Insertion into (16) gives the ordinary differential equation (17) for the determination of 
the g( rp )-function. 

Weg'(rp) + wdl + D sin 2g( rp) + e cos rp cos2 g( rp)] = 0, 

f(rp,a)=exp[iag(rp)], --+ p(rp,'ifJ)=2~O[g(rp)-'ifJ]. 
(17) 

(18) 

Knowing the g-function, we can retransform the a-variable. The final result, noted in 
(18), is a singular density distribution p(rp, 'ifJ) for the joint invariant measure of the two 
angle processes 'P! and Wt • 

Solutions cos2g(phl) 
I~------,------, 1. 3 

a.Ili-~4--++-+----1 

E - a 
0.0 1. 6 3. I 

Denslty Angle phl 

Figure 5: Periodic solutions of cos 2g( rp )-functions 

The g-solutions of the nonlinear equation (17) are numerically calculated by means of an 
Euler scheme. Since p( 'ifJ) is periodic in the angle range, we are looking for such solutions 
that the functions sin2g(rp) and cos2g(rp) are periodic in -7r :::; rp :::; +7r. This can be 
achieved by means of shooting methods. We select those initial values at rpo = -7r which 
coincide with the simulated end values at rpl = +7r. Hereby, possible initial values are 
restricted to 0 :::; go :::; 7r /2 and -1 :::; cos 2go :::; +1, respectively. In figure 5, we give four 
typical examples of periodic cos 2g(rp )-functions. The lower ones are simulated for e = 0, 
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We = 0.5 and We = 2.5. The upper ones show periodic solutions for parameter excitations 
with e = 1.5 and same We-values, as above. The associated Lyapunov exponents (LE) are 
now calculable by the expected value (19) defined by p(rp) = 1/2?r. 

1 1+'" 1 >. = -W1 2?r _,.. [2Dsin2 g(rp) + 2ecosrpsin2g(rp)]drp. (19) 

It follows from the singular density distribution p( '10, 1/J) after integration with respect to 
the 1/J-variable and corresponds to the time average (13) provided the existence of periodic 
and continuously differentiable cos 2g( '10 )-solutions. 

5 Invariant measures for multiplicative noise 

As already mentioned, the generalized excitation model (1) tends to a broad-band process 
for infinitely increasing frequency fluctuations and amplitudes. In this limiting case, the 
parametric excitation in (9) can be replaced by multiplicative white noise. 

(20) 

It can be proofed [6] that both equations (9) .and (20) possess the same invariant measures 
and Lyapunov exponents. In the following, we restrict our interest to the white noise case 
(20). Introducing polar coordinates we derive the separated phase equation by means of 
Ito's calculus. 

The phase process is stationary in the angle range -?r /2 ~ 1/J ~ +?r /2. It can be si
mulated by forward differences and then evaluated in order to estimate associated phase 
distribution densities p( 1/J). 

Comparison at Simulation and Analysis 
.9r--------------,---------------, 
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Figure 6: Analytical and simulated phase density solutions 

We compare the Monte-Carlo simulation results, shown in figure 6, with corresponding 
ones derived from the Fokker-Planck equation of (21). Integrated with respect to 1/J it 
takes the following form [7]: 
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(22) 

Herein, dash denotes derivation with respect to 'if; and C is an integration constant. It 
has to be calculated by the normalization of the density distribution p( 'if;) in -71'/2 :S 'if; :S 
+71'/2. Obviously, the equation (22) is singular at 'if;o = ±71'/2. To select a regular solution 
we introduce backward differences [7] of the form p'( 'if;) = (Pn - Pn-l)/ fi'if; and solve the 
equation (22) by means of numerical integration. 

Pn = u2 cos4 'if;n + 2fi'if;[1 + (D - ~u2 cos2 'if;n) sin 2'if;n] 

fi'if; = 71'/N, -71'/2:S 'if;:S +71'/2, n = 1,2, ... ,N 

(23) 

This recurrence formula is started with the initial value Po = C at the left singularity 
-71' /2 and ends in the right singularity +71'/2 with the same value PN = C. For suffi
ciently small step sizes 0 < fi'if; < < 1, the denominator in (23) remains positive so that 
further singularities are avoided. Comparisons with the simulated results of figure 6 show 
convergence to the desired physical solutions. Finally, the calculated invariant measure 
p( 'if;) can be applied to evaluate the expected value 

(24) 

which is the top Lyapunov exponent of the oscillator (20). Evaluations in form of level 
lines are given in [6] or in [1]. 
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Summary 

The nonlinear stability behavior of a special railway bogy is investigated making use 
of the methods of bifurcation theory. By artificially increasing the degeneracy of the 
bifurcation problem we are able to treat two local bifurcation problems in one single 
global problem. These two local problems are, first, the calculation of the sub critical 
Hopf bifurcation at loss of stability of the steady state motion of the bogy and, second, 
the calculation of the turning point in the amplitude graph of the limit cycles. 

1 Introduction 

Experiments ([1]) and every day's ride experience show that the loss of stability of the 
steady state straight line motion of a rail vehicle at the critical speed ¥C is due to a 
flutter instability. To be more precise, a sub critical Hopf bifurcation occurs (which is 
explained below). In Fig. 1 a sketch of the experimental results presented in [1] is given. 
This graph represents the amplitude r of the limit cycle oscillations of the center of 
mass of a test bogy. In section 4 when the center manifold reduction is discussed it 
will be explained how it is possible to represent the motion of a complex n-dimensional 
system by means of a two-dimensional limit cycle oscillation with one frequency. 

Let us now consider some of the special features of Fig. 1. The abscissa corresponds to 
the steady state straight line motion. This motion is asymptotically stable for V < ¥C. 
At V = ¥C the above mentioned flutter instability occurs. It is called sub critical because 
the bifurcating limit cycles are unstable. They exist only for V < ¥C. The amplitude 
curve of the unstable limit cycles possesses a turning point at the speed V = Vn. The 
existence of the turning point has the consequence that globally, that is at greater 
amplitudes, also stable limit cycles exist. For V < Vn only the asymptotically stable 
steady state is present. For V > Vn there exist besides the steady state two limit 
cycles one stable and one unstable. For two arbitrarily selected velocities Vi and V2 the 
corresponding flows in the phase plane are depicted in Fig. 1, too. 

What are the practical conclusions to be drawn from the graph in Fig. 1? First, we note 
that the stability limit ¥C, which is obtained from a linearized stability analysis of the 
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steady state, is not of great practical importance. This is easy to understand because 
the domain of attraction of the stable steady state, which is bounded by the unstable 
limit cycle, is very small in the velocity domain Vn < V < Yc. Hence, in this velocity 
range a sufficiently large perturbation will lead to a stable limit cycle oscillation with 
amplitude r2, although a linearized stability analysis still predicts an asymptotically 
stable steady state. Thus for the practical operation of such a vehicle the stability limit 
is not given by V = Yc but by V = Vn. This poses the question: How can we calculate 
Vn ? There are at least three possibilities which come in mind. 

Ilul\ 

v, 

Figure 1: Experimentally obtained limit 
cycle oscillations of a railway bogy ([1]) 

Figure 2: Mechanical model of a special 
railway bogy with 14 degrees of freedom 

The simplest but computationally most expensive method would be by numerical sim
ulation. That is, by integrating the equations of motion numerically for varying initial 
conditions and checking to which attractor the trajectories converge. This procedure 
allows to find Vn and also to determine the domain of attraction. However, for a sys
tem with many degrees of freedom and several different nonlinear components due to 
rail-wheel contact, friction, spring and damping characteristics and geometry, numerical 
simulation is certainly not the best way to handle such a problem, particularly if one 
wants to study the influence of parameter variations. 

A second way to calculate Vn could be by means of a path following method, which 
would allow to follow the amplitude of the unstable limit cycle ([2]). However, such a 
method requires to calculate the unstable periodic solution of the full nonlinear system 
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and to check its stability. Again this is not an easy task computationally for a nonlinear 
system with many degrees of freedom. 

There is still a third method to handle the calculation of Vn by making use of the 
methods of bifurcation theory ([3-7]). We note that in the graph depicted in Fig. 1 two 
local bifurcations occur. The first at V = Vc, where the steady state loses stability due 
to a Hopf bifurcation. The second bifurcation occurs at V = Vn where the unstable 
limit cycle, that is, an unstable periodic solution changes into a stable one. If we 
treat these two local problems separately we would not gain very much because for the 
calculation of Vn we had to analyse a periodic state. However, following an idea of 
M. Golubitsky it is possible to calculate the bifurcations at Vc and Vn in one "global" 
problem simultaneously. Moreover, and this is the most important feature, this problem 
has still the steady state as its fundamental solution. 

This considerable simplification of the problem is achieved by introducing a second 
parameter in addition to the velocity V and by selecting this parameter in such a way 
that the bifurcation at Vc becomes more degenerate. To be more precise we want to make 
the third order terms in the normal form of the Hopf bifurcation vanish. This has the 
consequence that terms of fifth order must be included in our analysis. These fifth order 
terms allow us to calculate the amplitude curve with a turning point. The main impact, 
however, is the application of center manifold theory ([6]) which enables us to reduce 
the dimension of the n-dimensional system to a two-dimensional bifurcation system. 
Therefore, the calculation of the value of Vn can be performed (i) still by investigating a 
steady state and (ii) only having to analyse a two-dimensional system with few nonlinear 
terms of third and fifth order. This latter goal is achieved by application of normal form 
theory ([3-7]). 

2 Mechanical model and equations of motion 

We study the dynamical behavior of a special bogy (Fig. 2) used by the Austrian Railway 
Company (OBB) for special railway freight cars which are able to carry a full size truck. 
There is a growing interest to shift the transit of goods through Austria from freeways 
to rails. One of the several possibilities is to carry a whole truck on a rail car. This 
has the advantage that at the final destination without any loss of time the delivery of 
the freight is possible. However, due to the existing profiles of the tunnels the height of 
usual railway freight cars is not admissible and must be decreased. First of all this leads 
to the requirement that the radius of the wheels of the car must be decreased, too. In 
order to prevent too high pressures at the wheel-rail contact the number of axles must 
be increased. This leads to the design of a bogy with four axles instead of the usual two 
axles. Ride experience of the OBB showes, however, that the stability behavior of such 
a car is made worse in comparison to a conventional car. 

For the bogy of Fig. 2 which is an important component of such a car we use a mechanical 
model with 14 degrees of freedom. The bogy consists of two frames (I,ll) which are 
connected by a balancier (III). Each of the frames has three degrees of freedom expressed 
by their side motion UFi and two angles CPFi, tPFi representing rotations about the z- and 
x-axis, respectively. In vehicle dynamics cP is called yaw angle and tP roll angle. Each 
axle has two degrees of freedom Uj,cPj. 
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R 

v 

Figure 3: Approximation of the friction 
force by the fifth order polynomial (3) 

Figure 4: Critical speed v;, in its de
pendence on the conicity angle {) of the 
wheels 

The motion of the balancier is determined by the motion of the two frames and follows 
to (Fig. 1) 

UF2 - UFl 
<PB= 

2a 
(1) 

The balancier is fitted to the frames by two pins and friction plates A, B. The car body 
rests on two friction plates C, D and its position is fixed to the balancier by the pin E. 

The friction forces at the contact plates are 

R( vr ) = IlTsign( vr ) • (2) 

In (2), Il is the friction coefficient, T the vertical load and Vr the relative velocity. We 
approximate (2) by the fifth order polynomial 

(3) 

where the coefficients depend on Il and T (Fig. 3). 

The characteristics of the springs and dampers are assumed to be linear except for those 
springs acting in z-direction. They are progressive or hard springs. 

Most important for the success of a theoretical analysis of the dynamics of a road or 
rail vehicle is the modelling of the ground wheel contact mechanics. We use for it those 
assumptions made in [8,9,10] leading to nonlinear relationships between the creepages 
~"" ~y, ~<p and the contact forces T"" Ty • These assumptions correspond to the theory of 
Johnson-Vermeulen ([8]). 

The equations of motion can be derived in the form of Lagrange's equations as a system 
of 14 equations of second order 

Boq + F(q,q) = 0 . 

We transform these equations to a first order system. It takes the form 

Rox = N(x) (4) 

where Ro is a 28 x 28 matrix with constant elements and x, N E 1R28 • The components 
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of x are the variables shown in Fig. 2 and their time derivatives. The components of 
N(x) are expanded into power series up to and including terms of fifth order. The 
vector N takes the form 

By the notation x3 , for example, we mean a vector containing all possible monomials 
of third order in the 28 variables. We note that no terms of quadratic and fourth order 
appear in the equations of motion. Multiplying by ROl in (4) the equations are 

(5) 

The matrices A, C, Q contain only constant elements. In order to save storage room 
only those elements which are not equal to zero are stored. The parameter vector 
~ = (V, 6) has as its components the velocity V and the angle of conicity 6 of the wheels 
(Fig. 2). The angle 6 is chosen because its variation will enable us to annihilate the 
third order terms in the normal form of the bifurcation equations. 

3 Critical speed Vc and stability boundary in para
meter space 

The steady state of the bogy is given by Xo = 0, which is a solution of (5). The first step 
of the stability analysis is the calculation of the critical speed Vc. This is performed by 
increasing V quasistatically and calculating the eigenvalues of A. The angle 6 is kept 
at a prescribed value. For low speed all eigenvalues of A( ~) have a negative real part 
and, therefore, the steady state Xu = 0 is asymptotically stable. The critical speed Vc 
is reached when eigenvalues cross the imaginary axis for the first time. In the simplest 
(generic) cases this will happen either due to a simple zero eigenvalue or due to a 
purely imaginary pair of eigenvalues. For the bogy always a purely imaginary pair of 
eigenvalues appears at the stability limit Vc. If, in addition, we vary 6 we obtain Fig. 4. 

4 Center manifold reduction to a two-dimensional 
bifurcation system 

At ~c = (Vc,6) we can reduce the 28-dimensional system (5) to a two-dimensional 
bifurcation system. We do not explain this step in detail because this is done in [7], 
chapters 3 and 4. We only mention the necessary calculations. First, for ~ = ~c a linear 
transformation of coordinates x -+ By, is introduced in (5) that transforms the linear 
part into Jordan form. Those two variables Yt. Y2 which correspond to eigenvalues with 
zero real part are the active variables and Y3, . .. , Y28 are passive variables. Hence, we 
can write (5) as 

111 = -WY2 + g13(Yt. Y2,y.) + g15(Yl, Y2,Y.) 

Y2 = WYl + g23(Yt, Y2, Y.) + g25(Yt. Y2, y.) 

Y. = J.y.+g.3(Yt,Y2,y.)+g.5(Yt,Y2,Y.) 

(6) 
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where Y. = (Y3' .•• ' Y2S)T, J. is a 26 x 26 matrix whose eigenvalues all have a negative 
real part, ga and gs contain the nonlinear terms of third and fifth order, respectively. 
Intuitively speaking one can expect that in a local but finite neighborhood of the bifur
cation point the passive variables will decay and only the two active variables will be of 
relevance. However, it would be a mistake simply to ignore the y •. The decisive step is 
to eliminate in (6) the passive variables y. from the first two equations, which are the 
bifurcation equations, in a correct manner. This can be done by expressing the passive 
variables by the active variables in the form 

y. = H(Y1, Y2) (7) 

from (6)a. From the general theory ([6,7]) it follows that 

H(Y1,Y2) = O(IYlI2 + IY212) . (8) 

IT we were satisfied with bifurcation equations of third order we could set y. == 0 in 
(6h,2. This follows from the fact that because of (8), at least fourth order terms would 
result in (6)1,2 after inserting (7). However, for the fifth order terms in any case an 
influence of the passive variables is given and we have to calculate H(Yl! Y2) at least up 
to third order terms. The calculation is performed by series expansion and equating 
coefficients. From the special form of (6) follows that in (7) only third order terms can 
be present. After inserting (7) into (6)1,2 we obtain 

ill -WY2 + !t3(Yh Y2) + !tS(Y1, Y2) + O(lyI7) 

il2 = WY1 + h3(Yh Y2) + hS(Yh Y2) + O(lyI7 ) • 
(9) 

5 Simplification of the bifurcation equations by nor
mal form theory, unfolding and numerical results 

By a nonlinear change of variables Y -+ z we try to annihilate as many nonlinear terms 
in (9) as possible; IT the linear part were not degenerate all nonlinear terms could be 
removed. However, due to the degeneracy of the linear part resonant terms occur that 
cannot be eliminated. Despite of that, still a strong simplification can be achieved ([7]). 
IT we further introduce polar coordinates Zl = e1/ 4r cos <p, Z2 = e1/ 4r sin <p, (9) takes the 
form 

r = e1/ 2 ](3r3 + e](srS + O(leI3/ 2 ) 

cp = w + e 1/ 2 ](2r2 + e](4r4 + O(leI3/ 2) • 
(10) 

In general ](3 =f. 0 in (10)1. This means that the problem is three-determinate. Then 
locally in the neighborhood of the bifurcation point the third order term determines the 
behavior of the problem. However, in order to be able to calculate Yn we can use the 
second parameter 0 to make ](3 to vanish. In Fig. 5 ](3 is plotted as function of o. For 
0= Oc we obtain ](3 = 0 and the higher degenerate bifurcation equation (10h becomes 

(11) 

A universal unfolding of (11), that is, an embedding of (11) in a parametrized family 
that includes all qualitative possible solutions requires now two parameters, instead of 
one for (10)h and has the form 

r = e(v1r + V2r3 + KsrS) + O(leI3/ 2) • (12) 
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The mathematical unfolding parameters VI and V2 are given by 

(13) 

where 0'1 is the real part of the critical eigenvalue. Furthermore, the linear relationship 
between 1-'1> 1-'2 and Al = V-v", A2 = 6 - 6c can be seen from Fig.4. 

The steady state solutions of (12) allow us to calculate the practically important critical 
speed Vn by inserting those values of 6, which appear during the life time of a wheel 
set. Such results are shown in Fig. 6. 

K3 

o+-________ ~~------

-.001 

-.002 

-.003 

0.01 0.015 0.02 0.025 6 

Figure 5: Coefficient J{3 in (10) in its de
pendence on the conicity angle 6 of the 
wheels 
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The lecture 

G. looss: A Mathematical Justification of the Steady Ginzburg-Landau Equation 

presented at the Symposium has already been published under the following 
references: 

G. looss, A. Mielke and Y. Demay: Theory of Steady Ginzburg-Landau Equation 
in Hydrodynamic Stability Problems. Europ. J. Mech. B / Fluids 8 (1989) 229-268. 

G. looss and J. Los: Bifurcation of Spatially Quasi-periodic Solutions in 
Hydrodynamic Stability Problems (submitted to Nonlinearity) 

The paper 

F.H. Ling and Y.M. Cheung: Bifurcations in a Hard Spring Duffing Oscillator 

has not been presented at the Symposium. However, it is published in the proceedings 
of the Symposium since the authors couldn't attend the Symposium due to reasons 
out of their own control. 

W. Schiehlen, Editor 
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Bifurcations in a Hard Spring Duffing Oscillator 

F.H. Ling! and Y.M. OletUlg 

Department of Physics and Engineering Physics 

St,evens h15tit.ut,e of Technology 

Hoboken, N.} Oi030, U.S.A. 

Summary 

Tangent aud period-doubling bifurcation curves of a hard spring Duffing oscillator are calcu

lated with the shooting method and the continuation technique. From these curves, one observes 

clearly the route via period-doubling to chaos and the coexistence of mUltiple solutions. The 

results are compared with those obtained using harmonic balance method and numerical simu

lations. 

Introduction 

The Duffing oscillator and related oscillators with a potential well are among the 

most frequently studied examples in the chaotic dynamics. They aJ.'e rather simple in 

the mathematical description, but still, they possess abtUlciaJlt dynalllical belmvioms. 

TIlere aJ.'e many publications concerning oscillat.ors with a potential well, see Ling [1] 
and Thompson [2] alld references therein. On the contraJ:y, only few papers concern the 

chaotic d)'llaJl:llCS of a hard spring Duffing oscillator, see Fang alld Dowell [3] for some 

ntUllerical simulation results. hl the present paper the bifmcations in such all oscillator 

'will be studied in a more systematic way. 

Inverse-Symmetry and Harmonic Balance 

MalW nonlinear oscillators lmve an inverse synnlletry: 

x+ !(x,x,t) =0, !(x,x,f) = - !(-x,-x,t+~), (1) 

IOn leave from the Department of Engineering Mechanics, Shanghai Jiao Tong Universit,y, Shanghai 

200 030, PR China 

W. Schiehlen (Editor) 
Nonlinear Dynamics in Engineering Systems 
IUTAM Symposium Stuttgart/Germany 1989 
© Springer-Verlag Berlin Heidelberg 1990 
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where T is the period of the exciting force. It is evident (e.g. see Ling [4]) that if a:(t) 

is t.he solution of (1), then x(t) = -x(t + f) is also a solution. TIus conelu')ion does not 

only apply t.o a periodic solution, it applies also to a non-peliodic solution, e.g., a ellaOtic 

solution. MoreoveJ:, one distinguishes t.wo different kinds, namely the self-symmetric ones 

with a:(t) = -x(t + f) = :v(t) and the dual ones with x(t) #- x(t). Qearly, the phase 

portraits of a:( t) and x( t) are inverse-sYlllilletric eaell other in the later case. 

TIle Duffulg equation belong'S obviously t.o the cat.egory (1). In tIlls paper we will 
study 

(2) 

with {j = 0.1 and 'Y and n of varied values. 

Our task is t.o find bifurcation curves of (2). An obvious elloice is to use the harmonic 

balance method (see e.g. Sclmndt. and Toneil [5]), wInch is, however, practically only 

suit.able for the self-syrllinetric PI solutions. 

Suppose that 

x* = Acos(lli - cjJ) (3) 

and substit,ute (3) into (2), theJl tile approximate PI solution should satisfy 

(4) 

A bifurcation curve of the periodic solution in tile parallleter space is in fact an asseJlibly of 

the parameter conibinatiollS, with wInch the system has critical stable periodic solutions, 

so we investigate the stability of the periodic solution x* by adding a perturbation tenn 

'fJ 

x=x*+'fJ. (5) 

Substituting (5) into (3) leads to the variational equation of (2) 

(6) 

A.nd by substituting (2) into (6) we obtain a Mathieu equation. Apply the harlllonic 

balance method once again t.o this Matlneu equation, i.e. suppose 
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17 = ucosili + v sin 0.t (i) 

and &ubstitut,e it int.o (6), then the condition of non-trivial solut.ion (u ¥= 0, v ¥= 0) leads 

finally to the equation 

(8) 

From (6) and (8) one calculat.es PI biftu'cation ClU'Ves on the "I '" 0. plane which 

are plotted in Fig. 1 ",i.th dot, lines. TIlere ru:e also numerically calculated biftu'catioll 

curves plotted with solid lines in Fig. 1, see n~i; section for details. It is noticed that, 

the hanllonic balance results coincide with the nWllerical (exact) results very well for the 

out-of-phase PI bifm-cation and also for the in-phase PI biftu'cation with a not t.oo large 

exciting anlplitude "I. 

o 
o 
CIl 

o 
CO .... 

o 
Ici 

o 
o 

, •••••••• 1 •• 

Pl. ~ ~ . ....... 

~ ......... 

/ .. ' .... 

/ " P1.8c Pl. 

./ 1. 

V-- Pl. ---
see Fig. 2 

0.0 10.0 20.0 30.0 40.0 50.0 

Fig. 1 Bifm-cation cw'Ves of a hard Duffing oscillator (I) 

-- nWllerical results, ...... hanllonic balance results, 1; - in-phase PI bifm-cation 

curve, PI; - in-phase PI solution, subscript "0" means out-of-phase 
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In Fig. 1, the whole parameter plane is devided by the PI bifurcation curves illt,o 

tlu'ee regions: the upper region of out-of-phase solution Plo, the lower region of in-phase 

solution PI; and the middle region of coexistence of these two. AI; mentioned above, 

these PI solutions al'e self-symmetric. TIle harmonic balallce method Call not, halldle the 

dual symmetric solutions, but the ntunericalmethod Call. For this oscillator we find lllally 

other bifurcation curves near n = 1 as stated in the ned, section. 

Numerical Method 

First, we briefly review the lnllnericalmethod developed by Ling [1]. For a nonlinear 

periodic system 

x = f(t,x,a), f(t,x,a) = f(t+T,x,a), (9) 

where a is the parallleter of the system, the periodic solution x" satisfies 

x*(O, a) - x*(T, a) = O. (10) 

According to the Floquet theory, the critical periodic solution should also satisfy 

4>(t,a) = 8f (t'a:*,a) cp(t, a), cp(O, a) =1", (11) 

p[cp(T, a)] = 1, (12) 

where cp(t,a) is the fundamental matrix of (9) alld p[.] denotes the spectral radius. 

For a two dimensional system like all one-degree-of-freedom oscillator, the eigenvalues 

of CP(T,a) Call be calculated from 

A2 - A tr[CP(T,a)] + det[cp(T, a)] = 0, (13) 

alld recall the Jacobi identit~, 

(14) 

the condition (12) is reduced to 
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1 =F tr[<I>(T, al] + det[<I>(T, a)] = O. (15) 

In fact, the condition A = 1 cOlTesponcls to the tangent bifurcation, and ,\ = -1 COlTe

sponcls to the period-doubling bifurcation . 

... ... 

o 
C...; 

co 
o 

20.0 30.0 40.0 50.0 

Fig. 2 Bifurcation curves of a hard spring Duffing oscillator (II) 

-- tangent bifurcation, - - -- period-doubling bifurcation, 22 * 11 - second time 

period-doubling bifurcation of the first PI solution, PI - periodic, and "chaos" - chaotic 

solutions found by Fang and Dowell [3] 

For our system (2), equations (9), (10), (11) and (15) have the following founs 

{ 
XI (0) - Xl(T) = 0, 

X2(0) - x2(T) = 0, 

(16) 

(17) 
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[:::: ::] =[~ ~], 
1.=0 . 

(18) 

1 =F [:r3(T) +x6(T)] +exp(-6T) = O. (19) 

Select proper init.ial conditions and using shooting and continuation techniques we obt.ain 

the bifurcation curves fro111 equations (16) t.o (19) a<; shown in Fig'S. 2-4. 

In Fig. 2 we find a wide band of dual symmetric PI solutions and several na.l1'OW 

P3, P4 and P6 bands. There are many tiny periodic bands,however, it. is not possible 

t.o find all of them. Outside these bands t.here is the chaotic sea. It. is remarkable that 

the bifurcation curves are almost all parallel one another-a feature 'Woe observed also in 

the driven pendulum [1], which reduces the possible coexistence of different. solutions. 

However, we remember that the whole picture of Fig. 2 is located within the PI; region, 

so there is always a coexistence of PI; solution with other periodic and chaotic solutions . 

c 

o 
o 
.-I 

N 
0) 

o 

PI 

29.0 31.0 

...... .... 

33.0 

.... .... 

Fig. 3 Bifurcation curves of the hard spring Duffing oscillator (III) 

symbol description see Fig. 2 

35.0 
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Another reJJJal'kable feature is seen from the enlm:ged pictures, Figs. 3 and 4. TIIere 

is a P6 tangent bifurcation curve almost coincide with the second time period-doubling 

bifurcation curve of PI (in fact, the bifurcation curve 61 is slightly below the bifm·cation 

curve 22 * 11), and the whole P6 band and its period-doubling eJI.-tensions are embedded in 

the P4 band, which is the period-doubling eJI.-tension of the wide PI bmId. In this region 

there is a coexistence of PI; and P4 together with P6 (or PI2, P24 and so on) solutions. 

co 
en 
c:i 

29.5 30.0 

'Y 

Fig. 4 Bifurcation curves of the hard spring DufIing oscillator (IV) 

symbol description see Fig. 2 

Concluding Remarks 

30.5 

Bifm·cation diagram of the hard spring Duffing oscillator are calculated with nmllerical 

method as shown in Figs. 1-4, in which the hanllOniC balance results mId the numerical 

simulation results are also plotted. The harmonic balance method is a useful tool for 

t.reating the self-synunetric PI solution, but also only for this simplest. case. It. is clear 

that from the nmllerically calculated bifurcation diagram one is able to find out the global 

structure of the distribution of clifferent attractors in the parameter space including the 

coexistence case. Sparsely distributed periodic and chaotic solutions found by Fang and 
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Dmyell [3) with numerical sinrulation are alllomted in the corresponding periodic and 

chaotic bauds of om bifmcation diagram. However, only from these solutiol1'> it. is difficult 

to lUlderst.aud the global stmct.me. For example, ,vit.hout. the bifmcat,ion diagnll.ll one 

nk1.y very likely t.hink t.hat. the PS and P16 solutions in the midclle of Fig. 4 belong to 

the PI period-doubling sequence, although in fact they belong to a PS period-doubling 

sequence. 

From these cliagnll.115 we may conclude that. the rout.e t.o chaos in t.he hcll.'d spring 

Duffing mld similm' system is typically through a period-doubling bifmcation of dual 

s~'l1llnetric peliodic solutions. vve do not find the self-s)'l1lluetlic solution undergoes a 

period-doubling bifmcation in t.llls case. A.nd there is no indication of a quasi-peliodic 

motion as guessed by Fmlg mld Dowell [3), To om expelience, the qua,>i-peliodic motion 

appem's more frequently in illiven self-sU';t.ained oscillators. 

One of the authors (F.H.L.) t.hmlks the hospit.alit.y of professor G. Schmidt mId the 

finmicial sUppOli. by DE-FG02-S7ERl3740. 

References 

1. Ling, F.H.: A nllllerical study of the distribution of c1ifferent attractors in the 

pm'ameter space Z, Phys. B-Condensed Mati.el· to appem .. 

2. Thompson,.J .M.T.: Chaotic phenomena tliggering the escape from a potential well. 

Proc. R. Soc. Lond. A 421 (19S9) 195-225. 

3, Fang, T. mId Dowell E.H.: Nllllerical simulations of periodic mId chaotic responses 

in a stable Dulling systeril. Int. J. Non-Lineal' Mechanics 22 (19S2) 401-425. 

4. Ling, F.H.: Nllllerische Ber'echnllig einiger' nichtlinem'ell SchwlllgmIgssysterne, 

Dissertation Univer'sit.at St.uttgm't 19S1. 

5, Schmidt, G. mId Toncll, A.: Non-Linear Vibrations. CmIibridge: CmIlbridge Uni

versity Press 19S6, 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <>
    /PTB <>


    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




